라틴어 문장 검색

erunt (ex aequo) areae totae ABFD, PQRD ad invicem ut semisses totarum velocitatum, & propterea (ob aequalitatem velocitatum) aequantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 44:12)
Quoniam distantiae CD, CI aequantur, erunt vires centripetae in D & I aequales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:7)
id quod fit ubi rectae IK & NK aequantur, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 11:5)
Quoniam corporum altitudines PC & pC, KC & kC semper aequantur, manifestum est quod si corporum in locis P & p existentium distinguantur motus singuli (per Legum Corol. 2.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 6:4)
Concipe hanc Rotam pergere in circulo maximo ABL ab A per B versus L, & inter eundum ita revolvi ut arcus AB, PB sibi invicem semper aequentur, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 15:2)
adeo quod recta VP tanget hanc curvam in puncto P. Circuli nom radius sensim auctus aequetur tandem distantiae CP, & ob similitudinem figurae evanescentis Pnomq & figurae PFGVI, ratio ultima lineolarum evanescentium Pm, Pn, Po, Pq, id est ratio incrementorum momentaneorum curvae AP, rectae CP & arcus circularis BP, ac decrementi rectae VP, eadem erit quae linearum PV, PF, PG, PI respective.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 16:2)
Et longitudo semiperimetri Cycloidis AS aequabitur lineae rectae, quae est ad Rotae diametrum BV ut 2CE ad CB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 19:2)
Centro C intervallo CA describatur Globus exterior ABD, & intra hunc globum Rota, cujus diameter sit AO, describantur duae semicycloides AQ, AS, quae globum interiorem tangant in Q & S & globo exteriori occurrant in A. A puncto illo A, filo APT longitudinem AR aequante, pendeat corpus T, & ita intra semicycloides AQ, AS oscilletur, ut quoties pendulum digreditur a perpendiculo AR, filum parte sui superiore AP applicetur ad semicycloidem illam APS, versus quam peragitur motus, & circum eam ceu obstaculum flectatur, parteq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 24:3)
reliqua PT cui semicyclois nondum objicitur, protendatur in lineam rectam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 24:4)
Filum AR aequatur Cycloidis arcui dimidio APS.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 26:2)
Centro quovis G, intervallo GH Cycloidis arcum RS aequante, describe semicirculum HKMG semidiametro GK bisectum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:1)
adeo, si aequantur TR & LG, aequales in locis T & L;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:7)
motus ejus quatenus secundum positionem plani factus, hoc est motus puncti P, quo Trajectoriae vestigium AP in hoc plano describitur, idem est ac si vires TF, TH tollerentur, & corpus solis viribus FG, HI agitaretur, hoc est idem ac si corpus in plano AOP vi centripeta ad centrum O tendente & summam virium FG & HI aequante, describeret curvam AP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 55:13)
& superficies FE dividetur in totidem aequales annulos, quorum vires erunt ut summa omnium PD × Dd, hoc est, cum lineolae omnes Dd sibi invicem aequentur, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 67:9)
Elem) aequatur rectangulo ALB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 78:27)

SEARCH

MENU NAVIGATION