라틴어 문장 검색

Nam iuxat i solus est binarius naturaliter constitutus, cuius unitas media pars est. Quare constat primam esse unitatem cuntorum, qui sunt in naturali dispoisitone, numerorum et eam rite totius quamvis prolixae gentricem pluralitatis agnosci.
(보이티우스, De Arithmetica, Liber primus, De principalitate unitatis 1:8)
Atque haec est admirabilis huius numeri forma, quod cum fuerit ipsa dispositio descriptoque perspecta numerorum, ad latitudinem pariter inparem, ad longitudinem pariter parium numerorum proprietas invenitur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 6:1)
Atque hoc quidem in ceteris perspiciendum.
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 5:10)
Qua vero ratione tales numeros invenire possimus, si quis nobis eosdem proponat et imperet agnoscere, utrum aliqua mensura commensurabiles sint, an certe sola unitas utrosque metiatur, repperiendi ars talis est. Datis enim duobus numeris inaequalibus, auferre de maiore minorem oportebit, et qui relictus fuerit, si maior est, auferre ex eo rursus minorem, si vero minor fuerit, eum ex reliquo maiore detrahere atque hoc eo usque faciendum, quoad unitas ultima vicem retractionis inpediat, aut aliquis numerus, inpar necessario, si utrique numeri inpares proponantur;
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 1:1)
Age enim duos numeros propositos habeamus, quos iubeamur agnoscere, an eos aliqua communis mensura metiatur;
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 2:1)
Praeterea eos, qui sub ipsis sunt, si idem faciens sequentes versus alterutris comparaveris, omnes sine ullo inpedimento species superparticularis agnosces.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:14)
At vero quemadmodum singuli procreentur si in infinitum quis curet agnoscere, hic modus est. Habitudo enim superbipartientis, si utrisque terminis duplicetur, semper superbipartiens proportio procreatur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:1)
Sin vero ad secundum cunctos, qui tertii sunt ordinis, aptaveris, ordinatas species superparticularis agnosces.
(보이티우스, De Arithmetica, Liber primus, De eorum exemplis in superiori formula inveniendis. 1:3)
At vero si exagonos librata examinatione perspicias, ex eisdem triangulis et super se positispentagonis procreantur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:12)
Atque hoc rite notabitur in aliis cunctis sequentibus sese perspectum omnesque se triangulis antecedent.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:5)
Similis quoque ratio in ceteris perspici potest, si eorum procreationes diligentius volueris perscrutari.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:4)
Illud igitur perspiciendum est, quod, si idem tetragoni et parte altera longiores disponantur, ita ut alternatim sibi permixti sint, tanta in his est coniunctio, ut alias sibi in eisdem proportionibus communicent, discrepent autem differentiis, alias vero differentiis pares sint, proportionibus distent.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 1:1)
Illud quoque subtilius, quod multi huius disciplinae periti nisi Nicomachus nunquam antea perspexerunt, quod in omni dispositione vel continua vel disiuncta, quod continetur sub duabus extremitatibus minus est eo numero, qui ex medietate conficitur, tantum, quantum possunt duae sub se differentiae continere, quae inter ipsos sunt terminos constitutae.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:3)
Idque in omnibus rata consideratione perspicies.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 4:4)
Namque in hac proportione, quae est iij iiij vj, maior terminus, id est senarius, ad parvissimum terminum, id est ternarium, duplus est et differentia maximi et medii, id est senarii et quaternarii, duo scilicet, ad differentiam medii et ultimi, id est quaternarii atque ternarii, quae est unitas, dupla perspicitur.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 1:4)

SEARCH

MENU NAVIGATION