라틴어 문장 검색

Ubi autem termini duo duas medietates includunt, quod fit multiplicatis extremitatibus, hoc idem redditur in alterutram summam medietatibus ductis.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 2:5)
Quod enim sub duabus medietatibus continetur, aequale est ei, quod sub extremis conficitur, vel quod ab una medietate nascitur, aequale est illi, quod sub utrisque extremitatibus continetur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 6:4)
In quattuor enim terminis si fuerit quemadmodum primus ad tertium sic secundus ad quartum, proportionum ratione scilicet custodita, geometrica medietas explicatur, et quod continetur sub extremitatibus, aequum erit ei, quod sub utraque medietate ad se invicem multiplicata conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:4)
bis enim iij senarius est. Et quotienscunque datis duobus tetragonis eorum medietatem volumus invenire, latera eorum multiplicanda sunt, et qui ex his procreabitur, medietas est. Si autem cybi sunt, ut viij et xxvij, duae tantum inter hos eadem proportione medietates constitui queunt, xij scilicet et xviij.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:15)
Qua vero disciplina huiusmodi medietates repperire possimus expediendum est. Datis duobus terminis si arithmeticam medietatem constituere oportebit, utraque est extremitas coniungenda quodque ex ea copulatione colligitur dividendum, isque numerus, qui ex divisioneredactus est, arithmeticam medietatem inter extremitates locatus efficiet;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:1)
Illi vero, qui sunt pares, quoniam binarii numeri formae sunt, quique ex his coacervati collectique in unam congeriem parte altera longiores numeri nascuntur, hi secundum ipsius binarii numeri naturam ab eiusdem substantiae natura discessisse dicuntur, putanturque alterius naturae esse participes idcirco, quoniam, cum latera tetragonorum ab aequalitate progressa in aequalitatempropriae latitudinis ambitum tendant, hi adiecto uno ab aequalitate laterum discesserunt atque ideo dissimilibus lateribus et quodammodo a se alteris coniunguntur.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:5)
Senarii enim medietas ternarius est. In geometrica vero medietate neque eisdem suis partibus medius vel vincit minorem vel a maiore vincitur, neque eadem parte vel minoris minorem superat vel maioris a maiore relinquitur, sed qua parte sua medius terminus minorem superat, eadem parte sua maior terminus medium vincit, quod est ut medietas atque extremitas aequalibus medietatem et extremitatem reliquam suis partibus supervadant.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:16)
Geometrica medietas popularis quodammodo et exaequatae civitatis est. Namque vel in maioribus vel in minoribus aequali omnium proportionalitate componitur, et est inter omnes paritas quaedam medietatis aequum ius in proportionibus conservantis.
(보이티우스, De Arithmetica, Liber secundus, Quae medietates quibus rerum publicarum statibus comparentur 1:2)
Est autem proprium huius medietatis, quod, si in tribus terminis speculatio sit, compositis extremitatibus illa summa, quae inter extremitates est, non loco tantum verum etiam sit quantitate medietas.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:1)
et rursus illorum, qui sunt super secundo loco iunctos, cum ipsi quoque sint compositi, prior his numerus medietatis loco est, et hoc erit, usquidem occurrens unitas terminum ponat, ut si ponat quis quinarium numerum, altrinsecus circa ipsum sunt sumper iiij inferius vi. Hi ergo si uncat sint, faciunt x, quorum v numerus medietas est. Qui autem circa ipsos id est circa vi et iiij sunt, iij silicet et vij, idem is iuncti sint, eorum quinarius numerus medietas est;
(보이티우스, De Arithmetica, Liber primus, De principalitate unitatis 1:3)

SEARCH

MENU NAVIGATION