라틴어 문장 검색

Est autem tempus ut area SPQ, ejus dupla SP × QT, id est ut SP & QT conjunctim, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 45:6)
Nam Trajectoria descripta (eo quod PH + SP in Ellipsi, & PH - SP in Hyperbola aequatur axi) transibit per punctum P, & (per Lemma superius) tanget rectam TR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:12)
Ad momentum minimum 11865 addatur momentum, quod sit ad momentorum differentiam 100 ut trapezium FKCG ad triangulum SCG (vel quod perinde est, ut quadratum Sinus PK ad quadratum Radii SP, id est ut Pd ad SP) & summa exhibebit momentum areae, ubi Luna est in loco quovis intermedio P.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:28)
P ad Q. A dato puncto s ipsis SP, TQ aequales & parallelae ducantur semper sp, sq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 7:2)
) ut tangens PR, id est (ob proportionales PR ad QT & SP ad SY) ut SP × QT ÷ SY, sive ut SY reciproce & SP × QT directe; estq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 36:2)
Si corpus P revolvendo circa centrum S, describat lineam quamvis curvam APQ, tangat vero recta ZPR curvam illam in puncto quovis P, & ad tangentem ab alio quovis curvae Q agatur QR distantiae SP parallela, ac demittatur QT perpendicularis ad distantiam SP:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 43:1)
Sunt autem arcus illi PQ & QR ut velocitates descriptrices ad invicem, id est in dimidiata ratione SQ ad SP, sive ut SQ ad [sqrt]SP × [sqrt]SQ;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:8)
× SP} fit ut ½VQ ÷ {PQ × SP × SQ} sive ut ½OS ÷ {OP × SPq.}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:18)
& fiet L × {SP + PH} = 2SPH + 2KPH, seu SP + PH ad PH ut 2SP + 2KP ad L. Unde datur PH tam longitudine quam positione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 49:22)
Centro P intervallo AB - SP, si orbita sit Ellipsis, vel AB + SP, si ea sit Hyperbola, describatur circulus HG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:5)
Esto circuli circumferentia SQPA, centrum vis centripetae S, corpus in circumferentia latum P, locus proximus in quem movebitur Q. Ad diametrum SA & rectam SP demitte perpendiculi PK, QT, & per Q ipsi SP parallelam age LR occurrentem circulo in L & tangenti PR in R, & coeant TQ, PR in Z. Ob similitudinem triangulorum ZQR, ZTP, SPA erit RP quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 50:1)
quod corporis in linea RPB circa centrum S moventis velocitas in loco quovis P sit ad velocitatem corporis intervallo SP circa idem centrum circulum describentis in dimidiata ratione rectanguli ½L × SP ad SY quadratum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:9)
At quoniam vires illae non sunt ad invicem in ratione CP ad sp, sed (ob similitudinem & aequalitatem corporum S & s, P & p, & aequalitatem distantiarum SP, sp) sibi mutuo aequales, corpora aequalibus temporibus aequaliter trahentur de Tangentibus;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 9:12)
× SP^n} sive ut ½nVQ ÷ {PQ × SP^n × SQ}, adeoque ut ½OS ÷ {OP × SP^{n + 1}}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 21:4)
Cum autem velocitas Cometae in altitudine SP sit ad velocitatem in altitudine S[mu] in dimidiata ratione SP ad S[mu] inversè, id est in ratione S[mu] ad SN, longitudo hac velocitate eodem tempore descripta, erit ad longitudinem in Tangente descriptam ut S[mu] ad SN.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:5)

SEARCH

MENU NAVIGATION