라틴어 문장 검색

Nam si uniformis sit resistentia DK, figura aBKkT rectangulum erit sub Ba & DK, & inde rectangulum sub ½Ba & Aa aequalis erit rectangulo sub Ba & DK, & DK aequalis erit ½Aa. Quare cum DK sit exponens resistentiae, & longitudo penduli exponens gravitatis, erit resistentia ad gravitatem ut ½Aa ad longitudinem Penduli;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 44:1)
Et idem in pendulo majore evenire verisimile est, si modo Arca augeatur in ratione penduli.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 101:2)
Sit autem P corpus pendulum, VP filum, V punctum suspensionis, SPQR Cyclois quam Pendulum describat, P ejus punctum infimum, PQ arcus altitudini AE aequalis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 20:4)
Quare cum longitudines Pendulorum aequalibus temporibus oscillantium sint ut gravitates, & Lutetiae Parisiorum longitudo penduli singulis minutis secundis oscillantis sit pedum trium Parisiensium & 17/24 partium digiti;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:13)
Unde vicissim si vis sit ut distantia, movebitur corpus in Ellipsi centrum habente in centro virium, aut forte in circulo, in quem Ellipsis migrare potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 68:2)
Excessus longitudinis penduli, quod in Insula Goree & in illâ Cayennae minutis singulis secundis oscillatur, supra longitudinem Penduli quod Parisiis eodem tempore oscillatur, à Gallis inventi sunt pars decima & pars octava digiti, qui tamen ex proportione 692 ad 689 prodiere 81/1000 & 89/1000.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 7:16)
longitudines Pendulorum in Insulâ Goree, in illâ Cayennae & sub AEquatore, minutis singulis secundis oscillantium superabuntur à longitudine Penduli Parisiensis excessibus 81/1000, 89/1000 & 90/1000 partium digiti.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:14)
Pendulum ita constitutum deducebam a perpendiculo ad distantiam quasi pedum sex, idque secundum planum aciei unci perpendiculare, ne annulus, oscillante Pendulo, supra aciem unci ultro citroque laberetur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 105:7)
consideranda erit figura, quam Luna in Ellipsi illa revolvendo describit in hoc plano, hoc est Figura Cpa, cujus puncta singula p inveniuntur capiendo punctum quodvis P in Ellipsi, quod locum Lunae representet, & ducendo Sp aequalem SP, ea lege ut angulus PSp aequalis sit motui apparenti Solis à tempore Quadraturae C confecto;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 41:3)
adeo ut penduli in aere oscillantis resistentia illa quae velocitatis quadrato proportionalis est, quaeque sola in corporibus velocioribus consideranda venit, sit ad resistentiam ejusdem penduli totius, eadem cum velocitate in aqua oscillantis, ut 800 vel 900 ad 1 circiter, hoc est ut densitas aquae ad densitatem aeris quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 98:7)
Id tentabam construendo pendulum ex Globis duobus, quorum inferior & minor oscillaretur in aqua, superior & major proxime supra aquam filo affixus esset, & in Aere oscillando, adjuvaret motum penduli eumque diuturniorem redderet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 99:4)
Nam si descriptae Ellipses essent sibi invicem aequales, tempora periodica, per Theorema superius, forent in dimidiata ratione corporis S ad summam corporum S + P. Minuatur in hac ratione tempus periodicum in Ellipsi posteriore, & tempora periodica evadent aequalia, Ellipseos autem axis transversus per Theorema VII.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 19:1)

SEARCH

MENU NAVIGATION