라틴어 문장 검색

Quinquies enim quinario multiplicato xxv succrescunt.
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 3:7)
Metientur autem, si per pares numeros a binario inchoantes positos inter se inpares rata intermissione transsiliant, ut primus duo, secundus iiij, tertius vj quartus viij quintus x, vel si locos suos conduplicent et secundum duplicationem terminos intermittant, ut ternarius qui primus est numerus et unus -- omnis enim primus unus est -- bis locum suum multiplicet faciatque bis unum;
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 5:2)
Dispositos enim ab uno omnes pariter pares numeros in ordinem quousque volueris, primo secundum adgregabis, et si primus numerus et incompositus ex illa coacervatione factus sit, totam summam in illum multiplicabis, quem posterius adgregaveras.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 2:2)
Quod si primum incompositumque repperies, tunc in ultimae multitudinem summae coacervationem multiplicabis.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 2:5)
Bis enim iij vj faciunt, qui habet unam quidem a se denominatam partem, id est sextam, iij vero medietatem secundum dualitatem, at vero ij secundum coacervationem, id est secundum ternarium, quoniam coacervati iij multiplicati sunt.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:4)
Per hunc igitur si illam coacervationem multiplicaveris, perfectus numerus procreatur.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:8)
Sed hic primus rursus et incompositus est. Hunc igitur cum extremi adgregati summa multiplica, ut fiant sedecies xxxj, qui ccccxcvj explicant.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:16)
Igitur prima unitas virtute atque potentia non etiam actu vel opere et ipsa perfecta est. Nam si primam ipsam sumpsero de proposito ordine numerorum, video primam atque incompositam, quam si per se ipsam multiplico, eadem mihi unitas procreatur.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:18)
Recte igitur unitas propria virtute perfecta est, quod et prima est et incomposita et per se ipsam multiplicata sese ipsam conservat.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:20)
Tetragonus autem dicitur, ut brevissime dicam, quod post latius explicabitur, quem duo aequales numeri multiplicant, ut in hac quoque descriptione est. Unus enim semel unus est, et est potestate tetragonus.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:2)
Longilateros autem voco, quos uno se supergredientes numeri multiplicant.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:5)
Circum iiij enim ij sunt et vj Sed duo nascuntur ex uno et duobus, cum unum bis multiplicaveris;
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:6)
Nam cum vj ex binario ternarioque nascantur, tres binarium numerum uno superant, cunctique alii eiusdem modi sunt, ut primo et secundo ordine ad alterutrum multiplicatis terminis procreentur, ita ut quod nascitur ex duobus longilateris altrinsecus positis et bis medio tetragono tetragonus sit;
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:11)
Ita etiam unitas in se ipsa multiplicata nihil procreat.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:20)
VIIII vero tetragonus, quoniam tres habet in latere et factus est ex tribus in se multiplicatis, si ei unam lateris multiplicationem adiunxeris, rursus alius cybus aequabili laterum formatione concrescit.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:8)

SEARCH

MENU NAVIGATION