라틴어 문장 검색

VIIII vero si inter utrosque terminos ponam, ut sint v viiij xlv, fit armonica medietas, ut qua summa maximus numerus parvissimum praecedit, eadem maior differentia minorem differentiam vincat.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 4:5)
Hic erit medius terminus secundum arithmeticam proportionem.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:3)
Vel si eam proportionem, quam inter se dati termini custodiunt, dividas et id quod relinquitur medium terminum ponas.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:14)
X enim et xl faciunt l. Differentia autem inter x et xl. xxx sunt, quem si multiplices in denarium, id est in minorem, decies xxx oportet ccc efficies.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:18)
Hunc igitur si minori termino addas, facient xvj et hic numerus medius constitutus inter x et xl armonicam proportionem medietatemque servabit.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:21)
Liquet autem oppositam et quodammodo contrariam esse hanc medietatem armonicae medietati idcirco, quod in illa quemadmodum est maximus terminus ad parvissimum, sic terminorum maiorum differentia ad differentiam minorum, hic autem e contrario.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 1:9)
Est autem quinta medietas, quotiens in tribus terminis quemadmodum est medius terminus ad minorem terminum, ita eorum differentia ad differentiam medii atque maioris.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:2)
Sexta vero medietas est, quando tribus terminis constitutis quemadmodum est maior terminus ad medium, sic minorum terminorum differentia ad differentiam maximorum.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:1)
In dispositione enim, quae est j iiij vj, maximus terminus ad medium sesqualter est, differentia vero minorum, id est unius et iiij ternarius est, maiorum vero, id est quaternarii et senarii, binarius.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:2)
Ternarius autem binario comparatus sesqualteram habitudinem proportionis efficiet.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:3)
Haec autem huiusmodi invenietur, si duobus terminis constitutis, qui ipsi tribus creverint intervallis, longitudine latitudine et profunditate, duo huismodi termini medii fuerint constituti et ipsi tribus intervallis notati, qui vel ab aequalibus per aequales aequaliter sint producti vel ab inaequalibus ad inaequalia inaequaliter, vel ab inaequalibus ad aequalia aequaliter, vel quolibet alio modo, atque ita, cum armonicam proportionem custodiant alio tamen modo comparati faciant arithmeticam medietatem hisque geometrica medietas, quae inter utrasque versatur, deesse non possit.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:3)
In quattuor enim terminis si fuerit quemadmodum primus ad tertium sic secundus ad quartum, proportionum ratione scilicet custodita, geometrica medietas explicatur, et quod continetur sub extremitatibus, aequum erit ei, quod sub utraque medietate ad se invicem multiplicata conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:4)
Si vero inter iiij qui est tertius terminus aequa parte quarti quartum terminum superet et aequa primi a primo superetur, armonica huiusmodi proportio medietasque perspicitur, et quod continetur sub extremorum adgregatione et multiplicatione medietatis duplex est eo, quod sub utraque extremitate conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:6)
Utraque enim comparatio sesqualtera proportio est, et quod continetur sub extremitatibus, idem est ei, quod fit ex mediis.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:9)
Geometrica ergo proportio est huiusmodi.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:11)

SEARCH

MENU NAVIGATION