라틴어 문장 검색

In Parabola, velocitas est reciproce in dimidiata ratione distantiae corporis ab umbilico figurae, in Ellipsi minor est, in Hyperbola major quam in hac ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 42:2)
) velocitas gyrantis in hoc circulo sit ad velocitatem gyrantis in circulo quovis alio, reciproce in dimidiata ratione distantiarum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 45:4)
nec interea mutabitur aequatio nisi pro mutata magnitudine quantitatum per quas positio secantis determinatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:21)
Unde cum quantitates illae post singulas revolutiones redeunt ad magnitudines primas, aequatio redibit ad formam primam, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:22)
Cognoscatur quantitas areae APS tempori proportionalis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 28:3)
Posito quod vis centripeta sit reciproce proportionalis quadrato distantiae locorum a centro, spatia definire quae corpus recta cadendo datis temporibus describit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 3:1)
Coincidat autem EG ipso motus initio cum perpendiculari AB, & erit corporis velocitas in loco quovis E ut areae curvilineae ABGE latus quadratum. Q. E. I. In EG capiatur EM lateri quadrato areae ABGE reciproce proportionalis, & sit ALM linea curva quam punctum M perpetuo tangit, & erit tempus quo corpus cadendo describit lineam AE ut area curvilinea ALME.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 41:4)
etiam ut quantitatis hujus dimidium I × V ÷ DE.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 42:5)
innotescet erigendo ordinatam em reciproce proportionalem lateri quadrato ex PQRD + vel - DFge, & capiendo tempus quo corpus descripsit lineam De ad tempus quo corpus alterum vi uniformi cecidit a P & cadendo pervenit ad D, ut area curvilinea DLme ad rectangulum 2PD × DL. Namq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 46:3)
Hinc etiam si quantitas P sit maxima a centro distantia, ad quam corpus vel oscillans vel in Trajectoria quacunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 6:2)
quantitas A distantia corporis a centro in alio quovis Orbis puncto, & vis centripeta semper sit ut ipsius A dignitas quaelibet A^{n - 1}, cujus Index n - 1 est numerus quilibet n unitate diminutus;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 6:5)
tendat autem ad centrum C vis centripeta cubo distantiae locorum a centro reciproce proportionalis, & exeat corpus de loco V justa cum velocitate secundum lineam rectae CV perpendicularem:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 14:5)
XXVIII, datur quantitas Q, una cum curvis lineis abzv, dcxw:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 17:11)
Cum area tempori proportionalis sit quam linea Cp in plano immobili describit, manifestum est quod corpus, cogente justae quantitatis vi centripeta, revolvi possit una cum puncto p in curva illa linea quam punctum idem p ratione jam exposita describit in plano immobili.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 3:6)
differentia mk & summa ms reciproce ut altitudo pC, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 6:23)

SEARCH

MENU NAVIGATION