라틴어 문장 검색

Centro P intervallo PE describatur superficies Sphaerica EFK, qua distinguatur segmentum in partes duas EBKF & EFKD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 110:3)
& summa virium erit vis segmenti totius EBKD. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 110:8)
si corporum trahentium commune gravitatis centrum vel quiescit, vel progreditur uniformiter in linea recta, corpus attractum movebitur in Ellipsi, centrum habente in communi illo trahentium centro gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 21:4)
Etenim in AE capiatur linea quam minima Ee. Jungatur Pe, & in PA capiatur Pf ipsi Pe aequalis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 26:1)
Tangat autem punctum K curvam lineam LKI, planis extimorum circulorum AL & BI occurrentem in A & B;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 33:4)
& jungantur KM auferens ab eadem segmentum KMRK.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 36:5)
Et eodem computando fundamento invenire licet vires segmentorum Sphaeroidis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 38:1)
Concipe jam DPF, EPG designare Conos oppositos, angulis verticalibus DPF, EPG infinite parvis descriptos, & lineas etiam DH, EI infinite parvas esse;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:10)
& Conorum particulae Sphaeroidum superficiebus abscissae DHKF, GLIE, ob aequalitatem linearum DH, EI, erunt ad invicem ut quadrata distantiarum suarum a corpusculo P, & propterea corpusculum illud aequaliter trahent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:11)
AEquales igitur sunt vires coni DPF & segmenti Conici EGCB, & per contrarietatem se mutuo destruunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:14)
) componendo motum istum cum uniformi motu, secundum lineas eidem plano parallelas facto.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 53:5)
Incidat corpus in planum prius Aa secundam lineam GH, ac toto suo per spatium intermedium transitu attrahatur vel impellatur versus medium incidentiae, eaq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 4:3)
Ad planum emergentiae Bb erigatur perpendiculum IM, occurrens tum lineae incidentiae GH productae in M, tum plano incidentiae Aa in R;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 4:5)
& linea emergentiae KI producta occurrat HM in L. Centro L intervallo LI describatur circulus, secans tam HM in P & Q, quam MI productam in N;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 4:6)
& primo si attractio vel impulsus ponatur uniformis, erit (ex demonstratis Galilaei) curva HI Parabola, cujus haec est proprietas, ut rectangulum sub dato latere recto & linea IM aequale sit HM quadrato;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 4:7)

SEARCH

MENU NAVIGATION