라틴어 문장 검색

delegit enim de infinitae multitudinis pluralitate finitae terminum quantitatis et interminabilis magnitudinis sectione reiecta definitia sibi ad cognitionem spatia sepoposcit Constat igitur, quisquis hae pretermiserit, omnem philosophiae perdidisse doctrinam.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:16)
par numerus est, qui sub eadem divisione potest in maxima parvissimaque dividi, maxima spatio, parvissima quantitate secundum duorum istorum generum contrarias passiones.
(보이티우스, De Arithmetica, Liber primus, Definito numeri paris et inparis secundum Pythagoram. 1:2)
ut si quilibet datus par numerus dividatur, maior quidem quantum ad divisionis spatia non invenietur, quam disgregata mediatas, quantitate vero nulla minor est, quam in gemnia facta partitio;
(보이티우스, De Arithmetica, Liber primus, Definito numeri paris et inparis secundum Pythagoram. 1:5)
In duas enim partes divisione nihil minus est. Cum enim totum quis fuerit trina divisione partitus, spatii quidem summa minuitur, sed numerus divisionis augetur.
(보이티우스, De Arithmetica, Liber primus, Definito numeri paris et inparis secundum Pythagoram. 1:8)
pradocuimus enim quantitatem in infinitas pluralitates adcrescre, spatia vero, id est magnitudines in infinitissimas minui parvitaties atque ideo hic contra eventi.
(보이티우스, De Arithmetica, Liber primus, Definito numeri paris et inparis secundum Pythagoram. 1:11)
Haec nameque paris divisio spatio est maxima, parvissima quantitate.
(보이티우스, De Arithmetica, Liber primus, Definito numeri paris et inparis secundum Pythagoram. 1:12)
Par numerus est, qui in duo aequalia et in duo inaequalia partitionem recipit, sed ut in neutra divisione vel in paritati paritas vel paritati inparitas misceatur, praeter solum paritatis principem, binarium numerum, qui in aequalem non recipit sectionem, propterea quod ex duabus unitatibus constat et ex prima duoroum quoddammmodo paritate.
(보이티우스, De Arithmetica, Liber primus, Alia secundum antiquiorem modum divisio paris et inparis 1:2)
Nam iuxat i solus est binarius naturaliter constitutus, cuius unitas media pars est. Quare constat primam esse unitatem cuntorum, qui sunt in naturali dispoisitone, numerorum et eam rite totius quamvis prolixae gentricem pluralitatis agnosci.
(보이티우스, De Arithmetica, Liber primus, De principalitate unitatis 1:8)
Hunc quoque quaternarius in aequa partitur, qui binarii duplus est;
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 1:3)
sed binarius unitatis medietate dividitur, quae unitas naturaliter singularis non recipit sectionem.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 1:4)
Namque hi si per binarium numerum multiplicentur, omnes pariter inpares rite pluralitas demensa sufficiet.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 2:2)
Hos si per binarium numerum multiplices, efficies hoc modo:
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:2)
In numero vero pariter inpari, si fuerit unus in medio terminus, circum se positiorum terminorum, si in unum redigantur, medietas est, et idem eorum quoque, qui super hos sunt terminos, medietas est, atque hoc usque ad extremos omnium terminorum, ut in eo ordine, qui est pariter inparium numerorum, ij vj x iunctus binarius cum denario xxj explet, cuius senarius medietas invenitur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:15)
Namque ternarium ij non numerant, idcirco, quoniam si solos duos contra iij compares puciores sunt, sin vero binarium bis facias, amplior est tribus, cum crescit in iiij.
(보이티우스, De Arithmetica, Liber primus, De prime et incompositio 1:5)
Metitur autem numerus numerum, quotiens vel semel vel bis vel tertio vel quotienslibet numerus ad numerum comparatus neque deminuta summa neque aucta ad comparati numeri terminum usque pervenerit, ut ij si ad vj compares, binarius numerus senarium tertio metietur.
(보이티우스, De Arithmetica, Liber primus, De prime et incompositio 1:6)

SEARCH

MENU NAVIGATION