라틴어 문장 검색

Per quodvis punctorum A, B, C, D, puta A, duc Loci tangentem AE, & per aliud quodvis punctum B duc tangenti parallelam BF occurrentem Loco in F. Invenietur autem punctum F per Lemma superius.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 22:3)
generis vi centripeta & concessis figurarum curvilinearum quadraturis, requiruntur tum Trajectoriae in quibus corpora movebuntur, tum tempora motuum in Trajectoriis inventis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 8:2)
Quoniam densitas Medii prope verticem Hyperbolae major est quam in loco A, ut servetur densitas mediocris, debet ratio minimae tangentium GT ad Tangentem AH inveniri, & densitas in A, per Regulam tertiam, diminui in ratione paulo minore quam semisummae Tangentium ad Tangentium AH.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 96:2)
Detur umbilicus S, punctum P, & tangens TR, & inveniendus sit umbilicus alter H. Ad tangentem demitte perpendiculum ST, & produc idem ad Y, ut sit TY aequalis ST, & erit YH aequalis axi transverso.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 34:1)
Congruunt igitur observationes tam mense Novembri, quam mensibus tribus subsequentibus cum motu Cometae circa Solem in Trajectoriâ hacce Parabolicâ, atque adeo hanc esse veram hujus Cometae Trajectoriam confirmant.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 40:1)
Dentur tangentes HI, KL & puncta B, C, D. Age BD tangentibus occurrentem in punctis H, K & CD tangentibus occurrentem in punctis I, L. Actas ita seca in R & S, ut sit HR ad KR ut est media proportionalis inter BH & HD ad mediam proportionalem inter BK & KD;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 61:1)
Sit enim APQ Parabola, S umbilicus ejus, A vertex principalis, P punctum contactus, PO ordinatim applicata ad diametrum principalem, PM tangens diametro principali occurrens in M, & SN linea perpendicularis ab umbilico in tangentem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 16:1)
adeo ut axis transversus Trajectoriae describendae ad distantiam umbilicorum ejus, patet ex demonstratis in Casu secundo, & propterea Trajectoriam descriptam ejusdem esse speciei cum describenda:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 20:8)
ratione esse Tangentem anguli quo Spiralis praefinita, in Medio de quo egimus, secat radium AS, ad tangentem anguli quo Spiralis nova secat radium eundem in Medio proposito: Atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 17:6)
Nam si A & P sint Puncta contactuum ubivis in tangentibus sita, & per punctorum H, I, K, L quodvis I agatur recta IY tangenti KL parallela & occurrens curvae in X & Y, & in ea sumatur IZ media proportionalis inter IX & IY:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 61:4)
Quoniam sola vi insita describerent tangentes BC, bc his arcubus aequales, manifestum est quod vires centripetae sunt quae perpetuo retrahunt corpora de tangentibus ad circumferentias circulorum, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 25:2)
vel transeat per duo puncta V, v, si dantur duae tangentes TR, tr, vel tangat circulum FG & transeat per punctum V, si datur punctum P & tangens TR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 12:7)
Caeterum Trajectoriam quam Cometa descripsit, & caudam veram quam singulis in locis projecit, visum est annexo schemate in plano Trajectoriae opticè delineatas exhibere:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 41:1)
Sit BSKL superficies curva, T corpus in ea revolvens, STtR Trajectoria quam corpus in eadem describit, S initium Trajectoriae, OMNK axis superficiei curvae, TN recta a corpore in axem perpendicularis, OP huic parallela & aequalis a puncto O quod in axe datur educta, AP vestigium Trajectoriae a puncto P in lineae volubilis OP plano AOP descriptum, A vestigii initium puncto S respondens, TC recta a corpore ad centrum ducta;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 55:1)
Hinc si agatur BC secans PQ in r, & in PT capiatur Pt in ratione ad Pr quam habet PT ad PR, erit Bt Tangens Conicae sectionis ad punctum B. Nam concipe punctum D coire cum puncto B ita ut, chorda BD evanescente, BT Tangens evadet;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 29:2)

SEARCH

MENU NAVIGATION