라틴어 문장 검색

Obtinet autem, quae illi quoque recipiunt, quod quaedam partes eius respondent denominanturque secundum genus suum ad propriam quantitatem, ad similitudinem scilicet pariter paris numeri, aliae vero partes contrarium denominationem sumunt propriae quantitatis, ad pariter inparis scilicet formam.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:10)
Inter hos autem velut inter inaequales intemperantias medii temperamentum limitis sortitus est ille numerus, qui perfectus dicitur, virtutis scilicet aemulator, qui nec supervacua progressione porrigitur, nec contracta rursus deminutione remittitur, sed medietatis obtinens terminum suis aequus partibus nec crassatur abundantia, nec eget inopia, ut vj vel xxviiij.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 3:1)
Hoc autem erit perspicuum, si intellegamus, omnes inaequalitatis species ab aequalitatis crevisse primordiis, ut ipsa quodammodo aequalitas matris et radicis obtinens vim ipsa omnes inaequalitatis species ordinesque profundat.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:4)
eandemque vim obtinet sonus in musicis.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:4)
Hoc autem trina rursus imperatione colligitur, eaque resolvendi ars datis quibuslibet tribus terminis inaequalibus quidem sed proportionaliter constitutis, id est ut eandem medius ad primum vim proportionis obtineat, quam qui est extremus, ad medium, in qualibet inaequalitatis ratione vel in multiplicibus, vel in superparticularibus, vel in superpartientibus, vel in his, qui ex his procreantur multiplicibus superparticularibus, vel multiplicibus superpartientibus, eadem atque una ratione indubitata constabit.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:10)
Est igitur unitas vicem obtinens puncti, intervalli longitudinisque principium;
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:11)
Et qui ante ipsum numeri coniungantur, minores esse necesse est, usque dum ad unitatem detractio rata perveniat, quae puncti quodammodo et verticis obtineat locum.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:2)
Ac de solidis quidem, quae pyramidis formam obtinent, aequaliter crescentibus et a propria velut radice multiangula figura progredientibus dictum est. Est alia rursus quaedam corporum solidorum ordinabilis compositio, eorum qui dicuntur cybi vel asseres vel laterculi vel cunei vel spherae vel parallelepipeda, quae sunt, quotiens superficies contra se sunt, et ductae in infinitum nunquam concurrent.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:1)
ut binarius ad unum, quoniam duo sunt termini, duplam obtinet proportionem.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:9)
Illa est enim vere proportionalitas, quae medietatis quodammodo locum obtinens et in maioribus et in minoribus aequalibus proportionum comparationibus continetur.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:7)
Namque symphonia diatessaron, quae princeps est et quodammodo vim obtinens elementi,—constituitur scilicet in epitrita proportione, ut est quaternarius ad ternarium—in eiusmodi armonicis medietatibus invenitur.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 1:6)
Diapason vero et diapente, quae triplicis obtinent rationem, fit ab extremitatum differentia ad differentiam minorem.
(보이티우스, De Arithmetica, Liber secundus, De geometrica armonia 2:4)
Restat ergo de maxima perfectaque armonia disserere, quae tribus intervallis constituta magnam vim obtinet in musici modulaminis temperamentis et in speculatione naturalium quaestionum.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:1)
Omnem terrae ambitum, sicuti astrologicis demonstrationibus accepisti, ad caeli spatium puncti constat obtinere rationem, id est, ut, si ad caelestis globi magnitudinem conferatur, nihil spatii prorsus habere iudicetur.
(보이티우스, De philosophiae consolatione, Liber Secundus, XIII 1:7)
Deficiente etenim uoluntate ne aggreditur quidem quisque quod non uult, at si potestas absit uoluntas frustra sit. Quo fit ut, si quem uideas adipisci uelle quod minime adipiscatur, huic obtinendi quod uoluerit defuisse ualentiam dubitare non possis.
(보이티우스, De philosophiae consolatione, Liber Quartus, III 1:7)

SEARCH

MENU NAVIGATION