라틴어 문장 검색

Punctum igitur alio rursus intervallo a linea vincitur, ipsa scilicet, quae reliqua est, longitudine.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:40)
Est autem pyramis alias a triangula basi in altitudinem sese erigens, alias a tetragona, alias a pentagona et secundum sequentium multitudines angulorum ad unum cacuminis verticem sublevata.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:3)
At vero si his tertium, senarium, iunxero denaria pyramidis procreabitur altitudo.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:11)
Sin vero a qualibet basi profecta usque ad unitatem altitudo illa non venerit, curta vocabitur, recteque huiusmodi pyramis tali nuncupatione signatur, si usque ad extremitatem punctumque non venerit.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:3)
Dispositis enim in ordinem tetragonis i iiij viiij xvj xxv, quoniam hi solam longitudinem latitudinemque sortiti sunt et altitudine carent, si per latera solam unam multiplicationem recipiant, aequalem provehunt profunditatem.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:2)
Et quoniam omnis cybus ab aequilateris quadratis profectus aequus ipse omnibus partibus est -- nam et latitudini longitudo et his duobus compar est altitudo -- et secundum sex partes, id est sursum deorsum dextra sinistra ante post, sibi aequalem esse necesse est:
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:1)
Quidam vero hos bomiscos vocant, id est quasdam arulas, quae in Ionica Graeciae regione, ut ait Nicomachus, hoc modo formatae fuerunt, ut neque altitudo latitudini neque haec longitudini convenirent.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:10)
Quos autem superius laterculos diximus, quae sunt et ipsae quidem solidae figurae, hoc modo fiunt, quotiens aequalibus spatiis in longitudinem latitudinemque porrectis minor his additur altitudo, ut sunt huius modi:
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:1)
tres ter bis, qui sunt xviij vel quattuor quater bis, vel alio quo modo, ut his in latitudinem longitudinemque aequis minor altitudo ducatur.
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:2)
Nam si aequa fuerit latitudo longitudini et maior sit altitudo, illae figurae a nobis asseres, a Graecis docides nominantur.
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:6)
Ipsorum vero cyborum quanticunque fuerint ita ducti, ut a quo numero cybicae quantitatis latus coeperit, in eundem altitudinis extremitas terminetur, numerus ille cyclicus vel sphericus appellatur;
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:1)
Ipsi vero cybi, qui quamquam tribus intervallis sublati sint, tamen propter aequalem multiplicationem participant inmutabilis substantiae eiusdemque naturae sunt socii, non aliorum quam inparium coacervatione producuntur, nunquam vero parium.
(보이티우스, De Arithmetica, Liber secundus, Cybos eiusdem participare substantiae, quod ab inparibus nascantur 1:1)
Omnes enim planae figurae, quae nulla altitudine crescunt, una tantum medietate geometrica continuantur;
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:2)
unde duo tantum in his intervalla sunt constituta, a primo scilicet ad medium et a medio ad tertium.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:4)
unde formae solidae tria intervalla dicuntur habere.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:6)

SEARCH

MENU NAVIGATION