라틴어 문장 검색

& velocitas erit ut longitudo GD, quae cum data CG componit longitudinem CD, in Progressione Geometrica decrescentem, interea dum spatium RSED augetur in Arithmetica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 10:2)
Decrescit igitur area EDT uniformiter ad modum temporis futuri, per subductionem datarum particularum DTV, & propterea tempori ascensus futuri proportionalis est. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 19:10)
Decrescit igitur area EDT uniformiter singulis temporis particulis aequalibus, per subductionem particularum totidem datarum DTV, & propterea tempori proportionalis est. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 22:20)
Sustinet ergo superficies infima pondus cylindri praefiniti. Q. E. D. Et simili argumentatione patet Propositio, ubi gravitas decrescit in ratione quavis assignata distantiae a centro, ut & ubi Fluidum sursum rarius est, deorsum densius. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:12)
& propterea, quo corpora sint majora eo magis accurate resistentia tardescentium decrescet in duplicata ratione velocitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 15:5)
Tale est in quo globus idem eodem cum motu, in eodem temporis intervallo, motus similes & aequales, ad aequales semper à se distantias, ubivis in fluido constitutus, propagare possit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 31:2)
in recessu verò à magnete decrescit in ratione distantiae plusquam duplicata, per Prop.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 26:7)
Gravitatem pergendo à superficiebus Planetarum deorsum decrescere in ratione distantiarum à centro quam proximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 42:1)
ex Hypothesi quod densitas illa, pergendo ad circumferentiam, uniformiter decrescat.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:25)
Cum Lunae declinatione augetur hic aestus, usque ad diem septimum vel octavum, dein per alios septem dies iisdem gradibus decrescit, quibus antea creverat;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 20:14)
Idem denique colligitur ex luce capitum crescente in recessu Cometarum à Terra Solem versus, ac decrescente in eorum recessu à Sole versus Terram.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 17:1)
Proinde toto hoc tempore, ob recessum ipsius à Sole, quoad lumen decrevit, non obstante accessu ad Terram.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 17:14)
Eandem Ponthaeus & Galletius decrevisse, Montenarus & Ango semper crevisse testantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 36:6)
Quod spectatori in his planis constituto apparent in partibus à Sole directè aversis;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 47:3)
Hinc moles Terrae aridae indies augetur, & liquores, nisi aliunde augmentum sumerent, perpetuò decrescere deberent, ac tandem deficere.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 51:12)

SEARCH

MENU NAVIGATION