라틴어 문장 검색

Omnis autem cybus, qui ex tetragonorum superficie in profunditatem corporis crevit, per tetragoni scilicet latus multiplicatus, habebit quidem superficies vj, quarum singula planitudo tetragono illi priori aequalis est, latera vero xij, quorum unumquodque singulis his, quae superioris fuere tetragoni, aequum est, et, ut superius demonstravimus, tot unitatum est;
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:17)
Si enim numerum naturalem disponas in ordinem, et secundum per primum multiplices, talis nascitur numerus, vel si secundum per tertium, vel si tertium per quartum, vel si quartum per quintum, omnesque hi unitate tantum addita, multiplicentur, nascentur parte altera longiores.
(보이티우스, De Arithmetica, Liber secundus, De parte altera longioribus numeris eorumque generationibus 1:4)
Quicunque igitur facti sunt, procreabuntur parte altera longiores, ut subiecta descriptio docet, in qua, ex quibus numeris multiplicati nascuntur parte altera longiores, super adscripti sunt, qui vero nascuntur, subterius sunt notati.
(보이티우스, De Arithmetica, Liber secundus, De parte altera longioribus numeris eorumque generationibus 1:7)
Ergo si unitate tantum discrepent, qui multiplicantur, descripti superius numeri protenduntur, sin vero aliquo numero, ut ter vij vel ter v vel aliquo modo alio, et non eorum latera sola discrepent unitate, non vocabitur hic numerus parte altera longior, sed antelongior.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:1)
Namque si se ipsa multiplicet vel per latitudinem vel etiam per profunditatem vel si quem numerum in suam conglobet quantitatem, continuo alter exoritur.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:4)
Nam bis unum vel bis duo si facias, vel bis tres vel bis quattuor vel bis quinque vel quemlibet alium multiplicet, quisquis hinc nascitur, alius quam primo fuerat, invenitur.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:5)
Unitas quoque virtute et potestate ipsa quoque circulus vel sphera est. Quotiens enim punctum in se multiplicaveris, in se ipsum, unde coeperat, terminatur.
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:11)
Rursus si ponantur duo tetragoni ex superius descriptis, id est primus et secundus et in unum colligantur, et medius eorum parte altera longior his multiplicetur, tetragonus fit. Namque unus et iiij, si iungantur, v faciunt.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 30:2)
Sin vero convertas et inter duos, primum et secundum, parte altera longiores secundum tetragonum ponas, qui in ordine quidem secundus est, sed actu et opere primus, ex duobus parte altera longioribus congregatis et bis multiplicato medio tetragono rursus tetragonus conficitur.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 30:5)
Nam ex superioribus uno et iiij et bis multiplicato binario factus est novenarius tetragonus, qui scilicet a tribus procreatur;
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 39:2)
Et sequens, qui ex iiij et viiij et bis multiplicato senario coniunctus est xxv tetragonus et ipse ex inpari quinario nascitur et continenti post ternarium;
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 39:4)
Nam qui ex duobus et vj parte altera longioribus et quaternario bis multiplicato xvj tetragonus factus est, ille a quaternario numero, id est pari, producitur;
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 39:9)
Quod si medium terminum, id est v, in semet ipsum multiplicaveris, quinquies quinque faciunt xxv Et hic numerus ab eo, quem extremitates colligunt, quaternario maior est, quem scilicet differentiae conficiunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:5)
Recte igitur dictum est, in hac huiusmodi dispositione, quod continetur sub extremitatibus, minus esse illo numero, qui fit ex medietate, tantum, quantum differentiae in se multiplicatae restituunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:8)
Haec autem proportionalitas et in aliis omnibus vel superparticularibus vel superpartientibus invenitur huiusmodi proprietate in omnibusconservata, ut in continua proportione, quod fit sub extremitatibus, si tres fuerint termini, hoc a medietate multiplicata consurgat.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:1)

SEARCH

MENU NAVIGATION