라틴어 문장 검색

& inde, dicendo quod resistentia sit ad vim gravitatis ut ista motus pars amissa ad motum, quem gravitas Globi eodem tempore generaret;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 39:3)
Unde consequens est, quod motus aquae totius effluentis is erit quem pondus aquae foramini perpendiculariter incumbentis generare possit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 47:1)
& propterea ponderis pars illa, quam vasis fundum non sustinet, urgebit aquam defluentem & motum sibi proportionalem generabit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 47:5)
Jam vero pondus aquae, quod vas & Globus conjunctim sustinent, est pondus aquae totius in vase, praeter partem illam quae aquam defluentem accelerat, & ad ejus motum generandum sufficit, quaeque, per Propositionem superiorem, aequalis est ponderi columnae aquae cujus basis aequatur spatio inter Globum & canalem per quod aqua defluit, & altitudo eadem cum altitudine aquae supra fundum vasis, per lineam SR designata.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 57:1)
& propterea actio contraria aquae in Globum aequalis est vi quae motum eundem vel tollere vel generare possit, hoc est ponderi columnae aquae, quae Globo perpendiculariter imminet & cujus altitudo est RS.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 57:12)
Pondus autem istud, quo tempore data quaelibet aquae quantitas, per foramen basi Cylindri circa Globum descripti aequale, sublato Globo effluere posset, sufficit ad ejus motum omnem generandum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 58:5)
atque adeo quo tempore aqua in Cylindro uniformiter decurrendo describit duas tertias partes diametri Globi, sufficit ad motum omnem aquae Globo aequalis generandum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 58:6)
Et propterea aquae currentis impetus in Globum quiescentem, quo tempore aqua currendo describit duas tertias partes diametri Globi, si uniformiter continuetur, generaret motum omnem partis Fluidi quae Globo aequatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 58:8)
Et propterea resistentia Globi in Medio quocunque Fluidissimo uniformiter progredientis, quo tempore Globus duas tertias partes diametri suae describit, aequalis est vi, quae in corpus ejusdem magnitudinis cum Globo & ejusdem densitatis cum Medio uniformiter impressa, quo tempore Globus duas tertias partes diametri suae progrediendo describit, velocitatem Globi in corpore illo generare posset.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 60:3)
& diminui in ratione chordae ad arcum, ob tempus (seu durationem resistentiae qua arcuum differentia praedicta generatur) diminutum in eadem ratione:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 80:4)
Unde cum pondus Globi aquei, quo tempore Globus cum velocitate uniformiter continuata describat longitudinem pedum 30,556, velocitatem illam omnem in Globo cadente generare posset;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 82:3)
Si corpus quodlibet Sphaericum in Medio quocunque satis Fluido moveatur, & spectetur resistentiae pars illa sola quae est in duplicata ratione velocitatis, haec pars erit ad vim quae totum corporis motum, interea dum corpus idem longitudinem duarum ipsius semidiametrorum motu illo uniformiter continuato describat, vel tollere posset vel eundem generare, ut densitas Medii ad densitatem corporis quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 103:2)
Motus enim omnis reciprocus singulis recursibus à causa generante augeri solet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 59:4)
Et quoniam vis qua lineola LM generatur, si tota simul & semel in loco P impressa esset, efficeret ut Luna moveretur in arcu, cujus Chorda esset LP, atque adeò transferret Lunam de plano MPmT in planum LPlT;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 51:7)
Nam angulus mPl aequalis est angulo LPM, id est angulo deflexionis Lunae à recto tramite, quam praefata vis Solaris 3IT dato illo tempore generare possit;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 52:3)

SEARCH

MENU NAVIGATION