라틴어 문장 검색

adeoque particulae primae A densitas AH est ad particulae secundae B densitatem BI ut summa omnium AH + BI + CK + DL, in infinitum, ad summam omnium BI + CK + DL, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:16)
Et BI densitas secundae B, est ad CK densitatem tertiae C, ut summa omnium BI + CK + DL, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:17)
Quare cum densitates sint ut harum pressionum summae, differentiae densitatum AH - BI, BI - CK, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:11)
Nam partes duae quaevis tangi possunt a partibus Sphaericis in punctis quibuscunque, & ibi partes illas Sphaericas aequaliter premunt, per Casum 3.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 9:4)
Fingi possunt aliae condensationis leges, ut quod cubus vis comprimentis sit ut quadrato-quadratum densitatis, seu triplicata ratio Vis aequalis quadruplicatae rationi densitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:26)
Si Fluidi Sphaerici, & in aequalibus a centro distantiis homogenei, fundo sphaerico concentrico incumbentis partes singulae versus centrum totius gravitent;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 15:1)
Fingatur quod cubus vis comprimentis sit ut quadrato-cubus densitatis, & si gravitas est reciproce ut quadratum distantiae, densitas erit reciproce in sesquiplicata ratione distantiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:28)
Fingatur quod vis comprimens sit in duplicata ratione densitatis, & gravitas reciproce in ratione duplicata distantiae, & densitas erit reciproce ut distantia.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:29)
Ergo si ex aucta solidi Sphaerici magnitudine augeatur ejus resistentia in ratione duplicata, resistentia solidi Sphaerici dati ex diminuta magnitudine particularum Fluidi, nullatenus minuetur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 73:2)
describe circulos quotcunque, & statue numerum revolutionum inter perimetros duorum quorumvis ex his circulis, in Medio de quo egimus, esse ad numerum revolutionum inter eosdem in Medio proposito, ut Medii propositi densitas mediocris inter hos circulos ad Medii, de quo egimus, densitatem mediocrem inter eosdem quam proxime;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 17:4)
Hinc si detur densitas Fluidi in duobus locis, puta A & E, colligi potest ejus densitas in alio quovis loco Q. Centro S, Asymptotis rectangulis SQ, SX describatur Hyperbola secans perpendicula AH, EM, QT in a, e, q, ut & perpendicula HX, MY, TZ ad asymptoton SX demissa in h, m, & t.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 32:2)
Quoniam densitas Medii prope verticem Hyperbolae major est quam in loco A, ut servetur densitas mediocris, debet ratio minimae tangentium GT ad Tangentem AH inveniri, & densitas in A, per Regulam tertiam, diminui in ratione paulo minore quam semisummae Tangentium ad Tangentium AH.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 96:2)
ideoque (cum distantiae particularum systematis unius sint ad distantias correspondentes particularum alterius, ut diameter particulae vel partis in systemate priore ad diametrum particulae vel partis correspondentis in altero, & quantitates materiae sint ut densitates partium & cubi diametrorum) resistentiae sunt ad invicem ut quadrata velocitatum & quadrata diametrorum & densitates partium Systematum. Q. E. D. Posterioris generis resistentiae sunt ut reflexionum correspondentium numeri & vires conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 8:4)
Designet igitur ABKI corpus Sphaericum centro C semidiametro CA descriptum, & incidant particulae Medii data cum velocitate in corpus illud Sphaericum, secundum rectas ipsi AC parallelas:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:7)
Si Medii densitas in locis singulis sit reciproce ut distantia locorum a centro immobili, sitque vis centripeta in duplicata ratione densitatis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 7:1)

SEARCH

MENU NAVIGATION