라틴어 문장 검색

Esto circuli circumferentia SQPA, centrum vis centripetae S, corpus in circumferentia latum P, locus proximus in quem movebitur Q. Ad diametrum SA & rectam SP demitte perpendiculi PK, QT, & per Q ipsi SP parallelam age LR occurrentem circulo in L & tangenti PR in R, & coeant TQ, PR in Z. Ob similitudinem triangulorum ZQR, ZTP, SPA erit RP quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 50:1)
quod corporis in linea RPB circa centrum S moventis velocitas in loco quovis P sit ad velocitatem corporis intervallo SP circa idem centrum circulum describentis in dimidiata ratione rectanguli ½L × SP ad SY quadratum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:9)
At quoniam vires illae non sunt ad invicem in ratione CP ad sp, sed (ob similitudinem & aequalitatem corporum S & s, P & p, & aequalitatem distantiarum SP, sp) sibi mutuo aequales, corpora aequalibus temporibus aequaliter trahentur de Tangentibus;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 9:12)
× SP^n} sive ut ½nVQ ÷ {PQ × SP^n × SQ}, adeoque ut ½OS ÷ {OP × SP^{n + 1}}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 21:4)
Cum autem velocitas Cometae in altitudine SP sit ad velocitatem in altitudine S[mu] in dimidiata ratione SP ad S[mu] inversè, id est in ratione S[mu] ad SN, longitudo hac velocitate eodem tempore descripta, erit ad longitudinem in Tangente descriptam ut S[mu] ad SN.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:5)
Auferatur duplicata ratio velocitatis, nempe ratio 1 ÷ SP, & manebit Medii densitas in P ut OS ÷ {OP × SP}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:23)
× SP, in ratione duplicata temporis, adeoque tempus est ut PQ × [sqrt]SP, & corporis velocitas qua arcus PQ illo tempore describitur ut PQ ÷ {PQ × [sqrt]SP} seu 1 ÷ [sqrt]SP, hoc est in dimidiata ratione ipsius SP reciproce.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:6)
& haec vis, si in radium SP demittatur perpendiculum LE, resolvitur in vires SE, EL, quarum SE, agendo semper secundum radium SP, nec accelerat nec retardat descriptionem areae QSP radio illo SP factam;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:8)
Nam Cometa quo tempore describat arcum Parabolicum AC, eodem tempore ea cum velocitate quam habet in altitudine SP (per Lemma novissimum) describet chordam AC, adeoque eodem tempore in circulo cujus semidiameter esset SP revolvendo, describeret arcum cujus longitudo esset ad arcus Parabolici chordam AC in dimidiata ratione unius ad duo.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 55:1)
P corpus in perimetro Parabolae, & a loco Q in quem corpus proxime movetur, age ipsi SP Parallelam QR & perpendicularem QT, necnon Qv tangentiparallelam & occurrentem tum diametro YPG in v, tum distantiae SP in x.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 23:2)
Medii densitas, si datur distantia SP, est ut OS ÷ OP, sin distantia illa non datur, ut OS ÷ {OP × SP}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 10:2)
& erit Kk ad PK ut Pp ad Sp, hoc est in data ratione, adeoque FK × Kk seu area FKkf ut 3PK × SK ÷ SP id est ut EL;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:15)
Et propterea eo cum pondere quod habet in Solem in altitudine SP, cadendo de altitudine illa in Solem, describeret eodem tempore (per Scholium Prop. IV. Lib. I.) spatium aequale quadrato semissis chordae illius applicato ad quadruplum altitudinis SP, id est spatium AIq.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 55:2)
vis, qua corpusculum situm in I trahitur a Sphaera tota, erit ad vim qua trahitur in P, in ratione composita ex dimidiata ratione distantiae SI ad distantiam SP & ratione dimidiata vis centripetae in loco I, a particula aliqua in centro oriundae, ad vim centripetam in loco P ab eadem in centro particula oriundam, id est, ratione dimidiata distantiarum SI, SP ad invicem reciproce.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 102:2)
Patet hoc per Schol. Prop. IV. Lib. I. Cum autem perpendiculum Kd in SP demissum sit ipsius EL pars tertia, & ipsius SP seu ML in octantibus pars dimidia, vis EL in Octantibus, ubi maxima est, superabit vim ML in ratione 3 ad 2, adeoque erit ad vim illam, qua Luna tempore suo periodico circa Terram quiescentem revolvi posset, ut 100 ad 2/3 × 17872½ seu 11915, & tempore CS velocitatem generare deberet quae esset pars 100/11915 velocitatis Lunaris, tempore autem CPA velocitatem majorem generaret in ratione CA ad CS seu SP.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:19)

SEARCH

MENU NAVIGATION