라틴어 문장 검색

Explicatis attractionibus corporum Sphaericorum, jam pergere liceret ad leges attractionum aliorum quorundam ex particulis attractivis similiter constantium corporum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 112:1)
Huic vero si consequentem quaternarium superposuero, denarius explicatur, qui est tertius actu triangulus, quos per latera disponens ad superioris descriptionis exemplar cunctos triangulos numeros sine ullius dubitationis erroribus pernotabis.
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:5)
Junge SC, & triangulum SBC, ob parallelas SB, Cc, aequale erit triangulo SBc, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 4:8)
Et simili argumento attractio planorum omnium EF, ef in Sphaera tota, hoc est attractio Sphaerae totius, est ut summa planorum omnium, seu Sphaera tota, ducta in pS distantiam corpusculi a centro Sphaerae. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 53:6)
Quadratum enim ita ductae lineae in quattuor, pentagonum in quinque triangulos, exagonum in sex et ceteros in suorum angulorum modo mensuraque per triangulos partiuntur, ut est subiecta descriptio:
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:5)
Est igitur primus triangulus numerus, qui in solis tribus unitatibus dissipatur secundum superficiei positionem, triangula scilicet descriptione, et post hunc quicunque aequalitatem laterum in trina laterum spatia segregant.
(보이티우스, De Arithmetica, Liber secundus, Dispositio triangulorum numerorum 2:1)
Hinc attractiones corpusculi unius, factae versus singulas particulas Sphaerae unius, erunt ad attractiones alterius versus analogas totidem particulas Sphaerae alterius, in ratione composita ex ratione particularum directe & ratione duplicata distantiarum inverse.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 11:2)
Vi enim et potestate primi trianguli, id est unitatis, unitas latus est, actu vero et opere trianguli primi, id est ternarii, dualitas, quam Graeci dyada vocant.
(보이티우스, De Arithmetica, Liber secundus, De lateribus triangulorum numerorum. 1:5)
erunt areae ultimae curvilineae ADB, Adb (ex natura Parabolae) duae tertiae partes triangulorum rectilineorum ADB, Adb, & segmenta AB, Ab partes tertiae eorundem triangulorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 55:3)
Ad hunc modum infinita progressio est, omnesque ex ordine trianguli aequilateri procreabuntur, primum omnium ponenti quod ex unitate nascitur ut haec vi sua triangulus sit, non tamen etiam opere atque actu.
(보이티우스, De Arithmetica, Liber secundus, De lateribus triangulorum numerorum. 1:1)
Namque ex uno primo tetragono et binario primo parte altera longiore ternarius triangulus copulatur, et ex binario et quaternario, id est ex secundo tetragono senarius triangulus procreatur.
(보이티우스, De Arithmetica, Liber secundus, Quod ex quadratis et parte altera longioribus omnis formarum ratio consistat 1:2)
De corpore ex particulis constante, quarum vires attractivae decrescunt in ratione potestatis triplicatae distantiarum, assertio non valet, propterea quod, in hoc casu, attractio partis illius ulterioris corporis infiniti in Corollario secundo, semper est infinite major quam attractio partis citerioris.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 51:4)
manifestum est quod ex attractionibus in corpus maximum, nulla prorsus orietur mutatio motus attractorum inter se, nisi vel ex attractionum acceleratricum inaequalitate, vel ex inclinatione linearum ad invicem, secundum quas attractiones fiunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 41:4)
Hi vero omnes, si ad latitudinem fuerint comparati, id est trianguli tetragonis vel tetragoni pentagonis vel pentagoni exagonis vel hi rursus eptagonis, sine aliqua dubitatione triangulis sese superabunt.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:1)
Nam quoniam lineares numeros esse diximus, qui ab uno profecti in infinitum currerent, ut sunt j ij iij iiij v vj vij viij viiij x, his autem ordinatim compositis et ad se invicem cum distantia iunctis superficies nascebantur, ut, si unum et duo iungeres, primus triangulus nasceretur, id est tres, et cum his adiungeremus tertium, id est ternarium, senarius triangulus rursus occurreret, et post hos tetragoni uno intermisso, pentagoni vero duobus, exagoni tribus, eptagoni relictis quattuor nascebantur:
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:3)

SEARCH

MENU NAVIGATION