라틴어 문장 검색

Et in alio vero latere longitudinis eadem ratio descriptione notata est. Quare manifestum est, hunc numerum ex prioribus duobus esse procreatum, quoniam eorum retinet proprietates.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 2:9)
eodemque modo relictis semper duobus omnes a primo in infinitum pergentes metientur.
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 1:6)
Nam si post xv intermisero xvij et xviiij, incurrit xxj, quem ternarius numerus secundum septenarium metitur xxj enim numeri ternarius septima pars est, atque ideo hoc in infinitum faciens repperio primum numerum, si binos intermiserit, omnes sequentes posse metiri secundum quantitatem positorum ordine inparium numerorum.
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 2:8)
atque haec est infinita progressio.
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 3:9)
At vero superfluos ac deminutos longe multos infinitosque repperies, nec ullis ordinibus passim inordinateque dispositos et a nullo certo fine generatos.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 1:3)
Quod autem dictum est plus quam semel, id a binario numero principium capit et in infinitum per ternarium, quaternariumque et ceterorum ordinem sequentiamque progreditur.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 1:6)
Si igitur bis solum maiorem numerum minor numerus metiatur, subduplus vocabitur, si vero ter, subtriplus, si quater, subquadruplus et fit per haec in infinitum progressio, additaque eos semper sub praepositione nominabis, ut unus duorum subduplus, trium subtriplus, iiij subquadruplus appelletur et consequenter.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 1:10)
si vero quartum parem inspicias, id est. viij quarti numeri, id est quaternarii, duplus est. Idemque in ceteris in infinitum sumentibus sine aliquo inpedimento procedit.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:7)
atque hoc idem in infinitum si quis faciat, sine ulla offensione procedit.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:12)
atque hoc idem in infinitum progressis necesse est evenire, semperque una terminorum intermissione si crescat adiectio, ordinatas te multiplicis numeri vices invenire miraberis.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:17)
Superparticularium quoque infinita est multitudo ob eam rem, quod eiusdem species interminabili progressione funguntur.
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 1:6)
Habebit enim octonarius senarium totum et eius tertiam partem, id est ij Et per eandem sequentiam usque in infinitum progrediendum est. Notandum quoque est, quod iij comites sunt, duces iiij, rursus vj comites, duces viij, et in eodem ordine ceteri simili modo vocantur duces sesquitertii comites subsesquitertii.
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 10:3)
Si quis autem quarti anguli terminum, qui xvj numeri quantitate notatus est et longitudinem latitudinemque in quadragenos determinat, velit superioribus comparare, per x litterae formam proportione conlata, quadrupli multitudinem pernotabit, hisque est ordinabilis super se progressio, ut primus primum tribus superet, ut iiij unitatem, secundus secundum senario vincat, ut viij binarium, tertius tertium novenario transeat, ut duodenarius ternarium, et sequentes summulae trium se semper adiecta quantitate transsiliant.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:5)
Si ergo numerus alium intra se numerum habens eius duas partes habuerit, superbipartiens nominatur, sin vero tres, supertripartiens, quodsi iiij, superquadripartiens, atque ita progredientibus in infinitum fingere nomina licet.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 2:3)
habet enim quinarius totos in se tres et eorum duas partes id est duo. Si vero ad secundum ordinem speculatio referatur, supertripartiens proportio cognoscetur atque ita in sequentibus per omnes dispositos numeros omnes in infinitum species huius numeri convenientes ordinatasque respicies.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 5:2)

SEARCH

MENU NAVIGATION