라틴어 문장 검색

fiet ex aequo velocitas gyrantis in Conica sectione ad velocitatem gyrantis in circulo in eadem distantia, ut media proportionalis inter distantiam illam communem & semissem lateris recti sectionis, ad perpendiculum ab umbilico communi in tangentem sectionis demissum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 45:5)
Sin tanta sit corporis velocitas ut latus rectum L aequale fuerit 2SP + 2KP, longitudo PH infinita erit, & propterea figura erit Parabola axem habens SH parallelum lineae PK, & inde dabitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 49:25)
Unde si datur corporis velocitas in vertice principali D, invenietur Orbita expedite, capiendo scilicet latus rectum ejus, ad duplam distantiam DS, in duplicata ratione velocitatis hujus datae ad velocitatem corporis in circulo ad distantiam DS gyrantis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 51:2)
Centro P intervallo AB - SP, si orbita sit Ellipsis, vel AB + SP, si ea sit Hyperbola, describatur circulus HG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:5)
V & intervallo AB describatur circulus FH.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:8)
Hac methodo sive dentur duo puncta P, p, sive duae tangentes TR, tr, sive punctum P & tangens TR, describendi sunt circuli duo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:9)
Centro P, intervallo PS describe circulum FG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 12:2)
Eodem modo describendus est alter circulus fg, si datur alterum punctum p;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 12:4)
dein ducenda recta IF quae tangat duos circulos FG, fg si dantur duo puncta P, p;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 12:6)
vel transeat per duo puncta V, v, si dantur duae tangentes TR, tr, vel tangat circulum FG & transeat per punctum V, si datur punctum P & tangens TR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 12:7)
Centris B, C, intervallis BK, CL, describe circulos duos, & ad rectam KL, quae tangat eosdem in K & L, demitte perpendiculum SG, idemq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 16:4)
Super diametro Kk describatur circulus secans rectam OH in H;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 18:6)
q intervallo quod sit ad ab ut SP ad VS describe circulum secantem figuram apb in p.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 22:8)
Si omnes tres aequantur, locabitur punctum Z in centro circuli per puncta A, B, C transeuntis. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 29:2)
Ponamus imprimis lineas ad opposita latera ductas parallelas esse alterutri reliquorum laterum, puta PQ & PR lateri AC, & PS ac PT lateri AB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 4:2)

SEARCH

MENU NAVIGATION