라틴어 문장 검색

Hisce circumstantiis pressionem nil mutari colligitur, applicando demonstrationem Theorematis hujus ad Casus singulos Fluidorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 19:4)
Eadem Demonstratione colligitur etiam (per Prop. XIX.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 20:2)
Nam similis est horum Casuum Demonstratio.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 23:18)
Res manifesta est, nec indiget demonstratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 65:4)
& e regione puncti illius collocavi Regulam in digitos distinctam, quorum ope notarem longitudines arcuum a Pendulo descriptas.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 78:4)
habebimus Regulam inveniendi differentiam arcuum pro velocitate quacunque data.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 79:8)
si pro A, B, & C scribantur numeri inventi, fiet resistentia Globi ad ejus pondus, ut 0,0001334V + 0,000623V^{3/2} + 0,00227235V^2 ad longitudinem Penduli inter centrum suspensionis & Regulam, id est ad 121 digitos.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 80:14)
Optarim itaque (cum demonstratio vacui ex his dependeat) ut experimenta cum Globis & pluribus & majoribus & magis accuratis tentarentur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 90:3)
Verum in liquoribus qui ad sensum satis fluidi sunt, ut in Aere, in aqua seu dulci seu falsa, in Spiritibus vini, Terebinthi & Salium, in Oleo a foecibus per destillationem liberato & calefacto, Oleoque Vitrioli & Mercurio, ac Metallis liquefactis, & siqui sint alii, qui tam Fluidi sunt ut in vasis agitati motum impressum diutius conservent, effusique liberrime in guttas decurrendo resolvantur, nullus dubito quin regula allata satis accurate obtineat:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 102:14)
Quare cum Globus aqueus in aere movendo resistentiam patiatur qua motus sui pars 1/3261, interea dum longitudinem semidiametri suae describat (ut jam ante ostensum est) tollatur, sitque densitas aeris ad densitatem aquae ut 800 vel 850 ad 1 circiter, consequens est ut haec Regula generaliter obtineat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 103:1)
Unde si velocitas Globi eousque augeatur ut Medium non posset adeo celeriter in spatium illud irruere, quin aliquid vacui a tergo Globi semper relinquatur, resistentia tandem evadet quasi triplo major quam pro Regula generali novissime posita.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 103:6)
foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)
Patet hoc ex demonstratione casus primi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 17:6)
& eadem Regula obtinet in Planetis qui circa Solem revolvuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 32:3)
Obtinent autem hae Regulae in Planetis utrisque quam accuratissimè, quatenus observationes Astronomicae hactenus prodidêre.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 32:4)

SEARCH

MENU NAVIGATION