라틴어 문장 검색

fiet {2dd ÷ ee}S aequalis A. Unde est dd ad ee ut A ad 2S, & d ad e in dimidiata ratione ½A ad S. Est igitur velocitas quacum aqua exit e foramine, ad velocitatem quam aqua cadens, & tempore T cadendo describens spatium S acquireret, ut altitudo aquae foramini perpendiculariter incumbentis, ad medium proportionale inter altitudinem illam duplicatam & spatium illud S, quod corpus tempore T cadendo describeret.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 48:6)
incipiant autem solida temporibus quibuscunque proportionalibus in his Fluidis similiter moveri:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 71:7)
pergent eadem similiter moveri, adeoque quo tempore describunt spatia semidiametris suis aequalia, amittent partes motuum proportionales totis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 71:8)
Arcuum differentia motui amisso proportionalis, 16 8 4 2 1 1/2 1/4 1/8 1/16 digitorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 94:1)
Quare in Casu columnae quartae ubi velocitas erat 1, resistentia tota est ad partem suam quadrato velocitatis proportionalem, ut 21-2/7 + 64-3/14 seu 85½, ad 64-3/14;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 98:4)
& idcirco resistentia penduli in aqua est ad resistentiae partem illam in aere quae quadrato velocitatis proportionalis est, quaeque sola in motibus velocioribus consideranda venit, ut 85½ ad 64-3/14 & 535 ad 123/110 conjunctim, id est ut 637 ad 1.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 98:5)
adeo ut penduli in aere oscillantis resistentia illa quae velocitatis quadrato proportionalis est, quaeque sola in corporibus velocioribus consideranda venit, sit ad resistentiam ejusdem penduli totius, eadem cum velocitate in aqua oscillantis, ut 800 vel 900 ad 1 circiter, hoc est ut densitas aquae ad densitatem aeris quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 98:7)
motui amisso proportionalis 4 2 1 1/2 1/4 1/8 1/16 Numerus Oscillationum 3-3/8 6-1/2 12-1/12 21-1/5 34 53 62-1/5
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 100:3)
sed omnia experiri non vacat, & ex jam descriptis satis liquet resistentiam corporum celeriter motorum densitati Fluidorum in quibus moventur proportionalem esse quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 102:11)
si modo Fluidi vis Elastica ejusdem condensationi proportionalis esse supponatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 35:2)
Ideoque aequales & correspondentes pulsuum correspondentium partes, itus & reditus suos per spatia contractionibus & dilatationibus proportionalia, cum velocitatibus quae sunt ut spatia, simul peragent:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 36:8)
ponamus quod partes correspondentes spatia latitudinibus pulsuum proportionalia singulis vicibus eundo & redeundo describant:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 37:3)
Pulsus autem temporibus itus & reditus unius eundo latitudines suas conficiunt, hoc est, spatia temporibus proportionalia percurrunt;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 37:9)
Per hujus circumferentiam totam cum partibus suis exponatur tempus totum vibrationis unius cum ipsius partibus proportionalibus;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:10)
Hoc est (si ob brevitatem pulsuum supponamus HK & KN indefinite minores esse quantitate V) ut {HL - KN} ÷ VV ad 1 ÷ V, sive ut HL - KN ad V. Quare cum quantitas V detur, differentia virium est ut HL - KN, hoc est (ob proportionales HL - KN ad HK, & OM ad OI vel OP, datasque HK & OP) ut OM;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 46:1)

SEARCH

MENU NAVIGATION