라틴어 문장 검색

Nam quoniam par est, in partes aequalies recipit sectionem, partes vero eius mox indivisibiles aque insecabiles permanebunt, ut sunt vj x xiiij xviij xxij et his similes.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 1:3)
bis iij, bis v, bis vij, bis viiij, bis xj, et dienceps, ex quibus nascuntur hi:
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:4)
ij vj x xiiij xviij xxij, quos si dividas, unam recipient sectionem ceteram repudiantes, quod secunda divisio ab inparis medietate partis excluditur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:5)
Contrariae vero esse dicuntur hae species numerorum, id est pariter par et pariter inpar, quod in numero pariter inpari sola divisionem recipit maior extremitas, in illo vero solus minor terminus sectione solutus est, et quod in forma pariter paris numeri ab extremitatibus incipienti et usque ad media progredienti, quod continentur sub extremis terminis, idem est illi, quod continentur sub intra se positis summulis atque hoc idem usquedum ad duas medietates fuerit ventum in dispositionibus scilicet paribus;
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:10)
Igitur in eo, quod plus quam unam suscipit sectionem, habet similitudinem pariter paris, sed a pariter inpari segregatur;
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:5)
in eo vero, quod usque ad unum sectio illa non ducitur, pariter inparem non refutat, sed a pariter pari disiungitur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:6)
Nam et partes solvuntur et usque ad unitatem sectio illa non pervenit, sed ante unitatem invenitur terminus, quem secare non possis.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:9)
si viij in v fiunt xl, si viij in vii collegentur lvj atque ad hunc modum si omnes inferiores duplices a superioribus multiplicentur, vel si superiores eosdem inferiores multiplicent, cunctos, qui nati fuerint, inpariter pares invenies.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 5:4)
Et primus quidem et incompositus est, qui nullam aliam partem habet nisi eam, quae a tota numeri quantitate denominata sit, ut ipsa pars non sit nisi untias, ut sunt iij v vij xj xiij xvij xviiij xxiij xxviiij xxxj.
(보이티우스, De Arithmetica, Liber primus, De prime et incompositio 1:1)
IIJ enim et v si multiplices, iij tertio viiij facient, et quinquies v reddent xxv. His igitur nulla est communis mensurae cognatio.
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 6:11)
rursus post iiij et v sunt vj., qui secundi numeri, id est duorum, triplus est;
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:10)
si vero xj ad v, duplex sesquiquintus;
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 2:4)
Secundus vero, qui est viiij, habet ad se duodenarium numerum sesquitertium, duodenarius autem, quoniam habet tertiam partem, in sesquitertia proportione comparatur ad eum numerus xvj, qui tertiae partis sectione solutus est xxvij autem, quoniam tertius est triplex, habet ad se sesquitertium xxxvj et hic rursus ad xlviij eadem proportione comparatur.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 9:5)
Ut enim quinarii subiectam notulam fingant de v, vel denarii, quam descripsimus, id est de x, et alias huiusmodi non natura posuit, sed usus adfinxit.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:7)
quadratus in quattuor triangulos divisus, pentagonus in v triangulos divisus, exagonus in sex triangulos divisus.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:6)

SEARCH

MENU NAVIGATION