라틴어 문장 검색

Nomen Conicae sectionis in hoc Lemmate late sumitur, ita ut sectio tam rectilinea per verticem Coni transiens, quam circularis basi parallela includatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 15:1)
Indeterminatae ad, dg in aequatione secunda & AD, DG in prima ascendent semper ad eundem dimensionum numerum, & propterea lineae, quas puncta G, g tangunt, sunt ejusdem ordinis Analytici.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 66:15)
Describi autem debent segmenta ad eas partes linearum FG, FH, FI, ut literarum FSGF idem sit ordo circularis qui literarum BADB, utq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 119:7)
Capiatur autem QR ad eas partes puncti Q ut literarum P, Q, R idem sit ordo circularis atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 119:13)
Agantur autem PE & PQ ad eas partes linearum CE, PE, ut literarum PEiP & PEQP idem sit ordo circularis qui literarum FGHIF, & si super linea fi eodem quoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 132:13)
Nulla extat figura Ovalis cujus area, rectis pro lubitu abscissa, possit per aequationes numero terminorum ac dimensionum finitas generaliter inveniri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 9:1)
omnia Spiralis puncta per aequationem finitam inveniri possunt:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:6)
& propterea rectae cujusvis positione datae intersectio cum spirali inveniri etiam potest per aequationem finitam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:7)
Atqui recta omnis infinite producta spiralem secat in punctis numero infinitis, & aequatio, qua intersectio aliqua duarum linearum invenitur, exhibet earum intersectiones omnes radicibus totidem, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:8)
Quoniam circuli duo se mutuo secant in punctis duobus, intersectio una non invenitur nisi per aequationem duarum dimensionum, qua intersectio altera etiam inveniatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:10)
Quoniam duarum sectionum Conicarum quatuor esse possunt intersectiones, non potest aliqua earum generaliter inveniri nisi per aequationem quatuor dimensionum, qua omnes simul inveniantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:11)
Eadem de causa intersectiones binae rectarum & sectionum Conicarum prodeunt semper per aequationes duarum dimensionum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:16)
Ergo intersectiones numero infinitae rectarum, propterea quod omnium eadem est lex & idem calculus, requirunt aequationes numero dimensionum & radicum infinitas, quibus omnes possunt simul exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:18)
nec interea mutabitur aequatio nisi pro mutata magnitudine quantitatum per quas positio secantis determinatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:21)
Unde cum quantitates illae post singulas revolutiones redeunt ad magnitudines primas, aequatio redibit ad formam primam, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:22)

SEARCH

MENU NAVIGATION