라틴어 문장 검색

adeo versus centrum intermedium C attrahitur, esset ad vim qua corpus p versus centrum s attrahitur in eadem illa ratione data, hae vires aequalibus temporibus attraherent semper corpora de tangentibus PR, pr ad arcus PQ, pq, per intervalla ipsis proportionalia RQ, rq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 9:9)
Nam vires illae, quibus corpora se mutuo trahunt, tendendo ad corpora, tendunt ad commune gravitatis centrum intermedium, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 22:1)
eaedem sunt ac si a corpore intermedio manarent. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 22:2)
in locis intermediis conditionis utriusq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 63:12)
Incidat corpus in planum prius Aa secundam lineam GH, ac toto suo per spatium intermedium transitu attrahatur vel impellatur versus medium incidentiae, eaq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 4:3)
Proinde si ex aequali particularum numero componantur tempora quaelibet aequalia, erunt velocitates ipsis temporum initiis, ut termini in progressione continua, qui per saltum capiuntur, omisso passim aequali terminorum intermediorum numero.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 10:5)
Componuntur autem horum terminorum rationes ex aequalibus rationibus terminorum intermediorum aequaliter repetitis, & propterea sunt aequales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 10:6)
In literis quae mihi cum Geometra peritissimo G. G. Leibnitio annis abhinc decem intercedebant, cum significarem me compotem esse methodi determinandi Maximas & Minimas, ducendi Tangentes, & similia peragendi, quae in terminis surdis aeque ac in rationalibus procederet, & literis transpositis hanc sententiam involventibus [Data aequatione quotcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 36:1)
Partes igitur duae quaevis sphaericae non contiguae, quia pars sphaerica intermedia tangere potest utramque, prementur eadem vi. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 8:6)
Ad eundem modum si particulae fugant alias sui generis particulas sibi proximas, in particulas autem remotiores virtutem nullam nisi forte per particulas intermedias virtute illa auctas exerceant, ex hujusmodi particulis componentur Fluida de quibus actum est in hac propositione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 46:11)
Unde si per has aequationes determinemus quantitates A, B, C;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 79:7)
Unde prodeunt aequationes A + B + C = 0,004135:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 80:8)
Quae aequationes per reductiones superius expositas dant, A = 0,000145, B = 0,000247 & C = 0,0009.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 88:4)
scribamus in his Casibus 1 & 8 pro velocitatibus, atque 85½ & 4280 pro resistentiis, & fiet A + C = 85½ & 8A + 64C = 4280 seu A + 8C = 535, indeque per reductionem aequationum proveniet 7C = 449½ & C = 64-3/14 & A = 21-2/7;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 98:2)
undarum singularum partes altissimae, vallibus totidem intermediis ab invicem distinctae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 9:4)

SEARCH

MENU NAVIGATION