라틴어 문장 검색

Quibus quattuor partibus si careat inquisitor, verum invenire non possit, ac sine hac quidem speculatione veritatis nulli recte sapiendum est. Est enim sapientia earum rerum, quae vere sunt, cognitio et integra comprehensio.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:10)
Si enim positis in naturali constitutione numeris singulos per suas sequentias pares eligas, omnium ab uno parium atque inparium sese sequentium duplices erunt et huius speculationis terminus deficit.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:2)
habet enim quinarius totos in se tres et eorum duas partes id est duo. Si vero ad secundum ordinem speculatio referatur, supertripartiens proportio cognoscetur atque ita in sequentibus per omnes dispositos numeros omnes in infinitum species huius numeri convenientes ordinatasque respicies.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 5:2)
Est autem quaedam in hac re profunda et miranda speculatio et ut ait Nicomachus enmusotaton theorema proficiens et ad Platonicam in Timaeo animae generationem et ad intervalla armonicae disciplinae.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 1:1)
Semper enim hoc divina quadam nec humana constitutione speculationibus occurrit, ut quotienscunque ultimus numerus invenitur, qui loco duplicis ab unitate sit par, talis sit, ut in medietates dividi secarique non possit.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:13)
at in quadrupla quadrupli atque hoc in infinita ductum speculatione non fallit.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 23:5)
Amat enim quodammodo matheseos speculatio alterna probationum ratione constitui.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:3)
Qui autem de natura rerum propinquis investigantes rationibus, quique in matheseos disputatione versati, quid in quaque re esset proprium, subtilissime peritissimeque ediderunt, hi rerum omnium naturas in gemina dividentes hac speculatione distribuunt.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:2)
nunc res admonet quaedam de proportionibus disputantes, quae nobis vel ad musicas speculationes vel ad astronomicas subtilitates vel ad geometricae considerationis vim vel etiam ad veterum lectionum intellegentiam prodesse possint, arithmeticam introductionem commodissime terminare.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:2)
Quare ordine disputatio progredietur, si ab ea primo inchoandum sit medietate, quae in numeri differentia non in proportionis speculatione versatur.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 2:3)
In qua neglecta proportionis aequalitate terminorum tantum differentiarumque speculatio custoditur, ut:
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:2)
Sin autem permiscens et aliquos praeteriens eligas et in his aliquam speculationem ponas, idem poterit evenire.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:11)
Est autem proprium huius medietatis, quod, si in tribus terminis speculatio sit, compositis extremitatibus illa summa, quae inter extremitates est, non loco tantum verum etiam sit quantitate medietas.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:1)
Nunc vero quae hanc sequitur, geometrica medietas expediatur, quae sola vel maxime proportionalitas appellari potest propterea quod in eisdem proportionibus terminorum vel in maioribus vel in minoribus speculatio ponitur.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 1:1)
Cuius haec ratio est, quoniam arithmetica dispositio aequas tantum per differentias dividit quantitates, geometrica vero terminos aequa proportione coniungit, at vero armonica ad aliquid quodammodo relata consideratione neque solum in terminis speculationem proportionis habet neque solum in differentiis, sed in utrisque communiter.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 1:2)

SEARCH

MENU NAVIGATION