라틴어 문장 검색

Alii enim eorum sunt superflui, alii deminuti secundum utrasque habitudines inaequalitatis.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 1:2)
Igitur post duas primas habitudines multiplices et superparticulares et eas, quae sub ipsis sunt, submultiplices et subsuperparticulares tertia inaequalitatis species invenitur, quae a nobis superius superpartiens dicta est. Haec autem est, quae fit, cum numerus ad alium comparatus habet eum totum intra se et eius insuper aliquas partes, vel duas vel tres vel iiij vel quotquot ipsa tulerit comparatio;
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 1:1)
quae habitudo incipit a duabus partibus tertiis;
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 1:2)
sin vero duas sextas, rursus est superparticularis, duae enim sextae pars tertia est, quodsi in comparatione ponatur, sesquitertiae habitudinis efficiet formam.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 1:6)
His igitur ita dispositis si primus primo, secundus secundo, tertius tertio et ceteri ceteris comparentur, superpartiens habitudo procreatur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 2:5)
At vero quemadmodum singuli procreentur si in infinitum quis curet agnoscere, hic modus est. Habitudo enim superbipartientis, si utrisque terminis duplicetur, semper superbipartiens proportio procreatur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:1)
Si enim quis duplicet v, faciet x, si iij, faciet vj, qui x contra senarium comparati superbipartientem faciunt habitudinem.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:2)
Et hos ipsos rursus si duplicaveris, idem ordo proportionis adcrescit, idemque si infinitum facias, statum prioris habitudinis non mutabit.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:3)
et quotiens totum numerum in semet ipso continuerit per multiplicis numeri species appellabitur, quam vero partem comparati numeri clauserit, secundum superparticularem comparationem habitudinemque vocabitur.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:12)
Si autem a ternario numero ingressi cunctos naturalis numeri triplices disponamus et eis a denario numero denario sese supergredientes ordine comparemus, omnes triplices sesquitertii in ea terminorum continuatione provenient.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 17:1)
Videbis igitur hoc facto in minorem modum summas reverti et ad principaliorem habitudinem comparationes proportionesque reduci, ut si sit quadrupla proportio, primo ad triplam, inde ad duplam, inde ad aequalitatem usque remeare;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:13)
sed ex tertio, id est ex lxxij, aufer primum, id est viij et duos secundos, id est bis xvj, et erit reliqua pars xxxij, quibus positis ad duplas proportiones habitudo redigitur:
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 3:7)
Si vero quadruplus sese ac sesquiquartus adglomerent, quincuplus continuo fiet, et si quincuplus cum sesquiquinto, mox sescupli proportio coniugabitur, atque ita secundum hanc progressionem cunctae multiplicitatis species sine ulla rati ordinis permutatione nascentur, ita ut duplus cum sesqualtero triplicem creet, triplus cum sesquitertio quadruplum, quadruplus eum sesquiquarto quincuplum et eodem modo, ut nullus hanc continuationem finis inpediat.
(보이티우스, De Arithmetica, Liber secundus, Quod multiplex intervallum ex quibus superparticularibus medietate posita intervallis fiat eiusque inveniendi regula. 5:4)
Dicunt enim omnes omnium rerum substantias constare ex ea, quae propriae suaeque semper habitudinis est nec ullo modo permutatur, et ea scilicet natura, quae variabilis motus est sortita substantiam.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:3)
Unde nunc nobis monstrandum est, hac gemina numerorum natura, quadratorum scilicet et parte altera longiorum cunctas numeri species cunctasque habitudines vel ad aliquid relatae quantitatis, ut multiplicium vel superparticularium et ceterorum, vel ad se ipsam consideratae, ut formarum, quas dudum in superiore disputatione descripsimus, informari, ut, quemadmodum mundus ex inmutabili mutabilique substantia, sic omnis numerus ex tetragonis, qui inmutabilitate perficiuntur, et ex parte altera longioribus, qui mutabilitate participiant, probetur esse coniunctus.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:8)

SEARCH

MENU NAVIGATION