라틴어 문장 검색

Alia vero disiuncta a se et determinata partibus et quasi acervatim in unum redacta concilium, ut grex populus chorus acervus et quicquid, quorum partes propriis extremitatibus terminantur et ab alterius fine discretae sunt His proprium nomen est multitudo.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:6)
Illud autem non minima consideratione dignum est, quod eius omnis pars ab una parte quacunque, quae intra ipsum numerum est, denominatur tantamque summam quantitatis includit, quota pars est alter numerus pariter paris illius, qui eum respondeant, ut quota pars una est, tantam habeat altera quantitatem, et quota pars ista est, tanum in priore summa necesse sit multitudinis inveniri.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 13:1)
Accidit autem his quod omnes partes contrarie denominantas habent, quam sunt tantitates ipsarum partium, quae denominantur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 1:5)
in eo vero, quod usque ad unum sectio illa non ducitur, pariter inparem non refutat, sed a pariter pari disiungitur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:6)
Obtinet autem, quae illi quoque recipiunt, quod quaedam partes eius respondent denominanturque secundum genus suum ad propriam quantitatem, ad similitudinem scilicet pariter paris numeri, aliae vero partes contrarium denominationem sumunt propriae quantitatis, ad pariter inparis scilicet formam.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:10)
In xxiiij enim numero par est quantitas partis a pari numero denominata.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:11)
Contrarie vero denominantur, ut tertia pars viij, octava vero iij. Vicesima autem quarta j quae denominationes cum pares sint, inveniuntur inpares quantitates, et cum sint pares summae, sunt inpares denominationes.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:13)
Inpar quoque numerus, qui a paris numeri natura substantiaque disiunctus est—si quidem ille in gemina aequa dividi potest, hic ne secari queat, unitatis inpedit inverventus—tres habet similiter subdivisiones, quarum una eius pars est is numerus, qui vocatur primus et incompositius, secunda vero, qui est secundus et compositus, et tertia is, qui quadam horum medietate coniunctus est et ab utriusque cognatione aliquid naturaliter trahit, qui est per se quidem secundus et compositus, sed ad alios comparatus primus et incompositus invenitur.
(보이티우스, De Arithmetica, Liber primus, De numero inpari eiusque divisione 1:1)
Et primus quidem et incompositus est, qui nullam aliam partem habet nisi eam, quae a tota numeri quantitate denominata sit, ut ipsa pars non sit nisi untias, ut sunt iij v vij xj xiij xvij xviiij xxiij xxviiij xxxj.
(보이티우스, De Arithmetica, Liber primus, De prime et incompositio 1:1)
Secundus vero et compositus et ipse quidem inpar est, propterea quod eadem inparis proprietate formatus est, sed nullam in se retinet substantiam principalem compositusque est ex aliis numeris habetque partes et a se ipso et ab alieno vocabulo denominatas;
(보이티우스, De Arithmetica, Liber primus, De secundo et composito 1:1)
sed a se ipso denominatam partem solam semper in his repperies unitatem, ab alieno vero vocabulo vel unam vel quotlibet alias, quanti fuerint scilicet numeri quibus ille compositis procreatur, ut sunt hi:
(보이티우스, De Arithmetica, Liber primus, De secundo et composito 1:2)
Horum ergo singuli habent quidem a se denominatas partes proprias, scilicet unitates, ut viiij nonam,id est unum, xv quintam decimam eandem rursus unitatem et in ceteris, quos supra descripsimus, idem convenit.
(보이티우스, De Arithmetica, Liber primus, De secundo et composito 1:4)
His vero contra se positis, id est primo et incomposito et secundo et composito, et naturali diversitate disiunctis alius in medio consideratur, qui ipse quidem compositus sit et secundus et alterius recipiens mensionem atque ideo et partis alieni vocabuli capax, sed cum fuerit ad alium eiusdem generis numerum comparatus, nulla cum eo communi mensura coniungitur;
(보이티우스, De Arithmetica, Liber primus, De eo, qui per se secundus et compositus est, ad alium primus et incompositus 1:1)
Nam quae in viiij tertia est, in xxv non est, et quae in xxv quinta est, in novenario non est. Ergo hi per naturam utrique secundi et compositi sunt, comparati vero ad se invicem primi incompositique redduntur, quod utrosque nulla alia mensura metitur, nisi unitas, quae ab utrisque denominata est;
(보이티우스, De Arithmetica, Liber primus, De eo, qui per se secundus et compositus est, ad alium primus et incompositus 1:4)
Bis enim iij vj faciunt, qui habet unam quidem a se denominatam partem, id est sextam, iij vero medietatem secundum dualitatem, at vero ij secundum coacervationem, id est secundum ternarium, quoniam coacervati iij multiplicati sunt.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:4)

SEARCH

MENU NAVIGATION