라틴어 문장 검색

Sunt enim artium et naturae particularia Phaenomena manipuli instar ad ingenii commenta, postquam ab evidentia rerum disjuncta et abstracta fuerint.
(FRANCIS BACON, NOVUM ORGANUM, Liber Primus 271:2)
QVA disiungatur uel qua racione iu[n]gatur Fedus amicorum, rex quendam phylosophorum Consulit, ut gnarum rerum specialiter harum.
(BALDO, NOUUS ESOPUS, XVIII. De mure et gatto 19:1)
Alia vero disiuncta a se et determinata partibus et quasi acervatim in unum redacta concilium, ut grex populus chorus acervus et quicquid, quorum partes propriis extremitatibus terminantur et ab alterius fine discretae sunt His proprium nomen est multitudo.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:6)
in eo vero, quod usque ad unum sectio illa non ducitur, pariter inparem non refutat, sed a pariter pari disiungitur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:6)
Inpar quoque numerus, qui a paris numeri natura substantiaque disiunctus est—si quidem ille in gemina aequa dividi potest, hic ne secari queat, unitatis inpedit inverventus—tres habet similiter subdivisiones, quarum una eius pars est is numerus, qui vocatur primus et incompositius, secunda vero, qui est secundus et compositus, et tertia is, qui quadam horum medietate coniunctus est et ab utriusque cognatione aliquid naturaliter trahit, qui est per se quidem secundus et compositus, sed ad alios comparatus primus et incompositus invenitur.
(보이티우스, De Arithmetica, Liber primus, De numero inpari eiusque divisione 1:1)
His vero contra se positis, id est primo et incomposito et secundo et composito, et naturali diversitate disiunctis alius in medio consideratur, qui ipse quidem compositus sit et secundus et alterius recipiens mensionem atque ideo et partis alieni vocabuli capax, sed cum fuerit ad alium eiusdem generis numerum comparatus, nulla cum eo communi mensura coniungitur;
(보이티우스, De Arithmetica, Liber primus, De eo, qui per se secundus et compositus est, ad alium primus et incompositus 1:1)
Ad primum enim, id est unitatem, ij duplus, iij triplus, iiij quadruplus atque ita in ordinem progredientes omnes texuntur multiplices quantitates.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 1:5)
Triplices autem nascuntur, si in eadem dispositione naturali duo semper intermittantur, et qui post duos sunt, ad naturalem numerum comparentur, excepto ternario, qui, ut unitatis triplus sit, solum binarium praetermittit.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:8)
Post unum enim et duo tres sunt, qui triplus unius est;
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:9)
rursus post iiij et v sunt vj., qui secundi numeri, id est duorum, triplus est;
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:10)
rursus post vj sunt vij. et viij et post hos viiij, qui tertii numeri, id est ternarii triplus est;
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:11)
Nam duplus unum intermittit, triplus ij quadruplus iij quincuplus iiij et deinceps ad eundem ordinem sequentia est. Et omnes quidem dupli secundum proprias sequentias parium numerorum pares sunt;
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:19)
Sit enim in ordine hoc modo numerus naturalis, ut sub eo quadrupli et tripli subponantur, sub primo quadruplo primus triplus, sub secundo secundus, sub tertio tertius, et eodem modo cuncti eiusdem primi versus tripli in ordinem digerantur.
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 6:4)
Sit enim talis descriptio, in qua ponatur in ordinem usque ad denarium numerum continui numeri ordo naturalis et secundo versu duplus ordo texatur, tertio triplus, quarto quadruplus et hoc usque ad decuplum.
(보이티우스, De Arithmetica, Liber primus, Descriptio, per quam docetur ceteris inaequalitatis speciebus antiquiorem esse multiplicitatem. 1:2)
Multiplex superparticularis est, quotiens numerus ad numerum comparatus habet eum plus quam semel et eius unam partem, hoc est habet eum aut duplum aut triplum aut quadruplum aut quotienslibet et eius quamlibet aliquam partem vel mediam vel tertiam vel quartam vel, quaecunque alia partium exuberatione contigerit.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:4)

SEARCH

MENU NAVIGATION