라틴어 문장 검색

Huic si secundum adgregavero, qui in naturali numerorum dispositione descriptus est, id est binarium, primus mihi triangulus opere et actu nascitur, id est ternarius.
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:2)
Si vero huic tertium ex naturali numero adiecero, secundus mihi opere et actu triangulus procreatur.
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:3)
Super unum enim et duo si tertium, id est ternarium adgregavero, senarius extenditur, secundus scilicet triangulus.
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:4)
Et quantas ultimus numerus in se unitates habet, quem superioribus adgregabis, tot ipse, qui fit triangulus, unitates habebit in latere.
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:6)
Nam ternarium, qui est primus actu triangulus, adiecto binario unitati feceramus;
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:7)
Nascuntur autem tales numeri ex naturalis numeri dispositione, non quemadmodum superiores trianguli, ut ordinatis ad se invicem numeris congregentur, sed uno semper intermisso, qui sequitur, si cum superiore vel superioribus colligatur, ordinatos ex se quadratos efficient.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 1:1)
Namque in trianguli numeri natura procreationeque ipsos numeros iungebamus qui sese in naturali dispositione sequerentur et se tantum unitate transirent.
(보이티우스, De Arithmetica, Liber secundus, De exagonis eorumque generationibus. 1:2)
Numeri trianguli, quadrati, pentagoni, eptagonique.
(보이티우스, De Arithmetica, Liber secundus, De eptagonis eorumque generationibus et communis omnium figurarum inveniendae generationis regula descriptionesque figurarum 1:1)
Nam in triangulo qui sunt numeri, quae prima superficiei figura est, uno sese tantum numeri praecedunt, qui scilicet, eorum naturam descriptionemque perficiunt;
(보이티우스, De Arithmetica, Liber secundus, De eptagonis eorumque generationibus et communis omnium figurarum inveniendae generationis regula descriptionesque figurarum 2:5)
Trianguli j iij vj x xv xxj xxviij xxxvj xlv lv
(보이티우스, De Arithmetica, Liber secundus, Descriptio figuratorum numerorum in ordine 2:1)
Quattuor enim tetragonus fit ex uno et tribus, id est ex duobus superioribus triangulis;
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:3)
novenarius vero ex tribus et sex, sed utrique sunt trianguli;
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:4)
Pentagonorum vero summae conficiuntur ex uno super se tetragono et altrinsecus triangulo constituto.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:7)
Nam quinarius pentagonus ex quaternario super se posito tetragono et ex uno, qui in triangulorum ordine ponitur, adgregatur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:8)
xij vero pentagonus ex novenario super se quadrato et tribus, secundo triangulo, nascitur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:9)

SEARCH

MENU NAVIGATION