라틴어 문장 검색

Capiantur AH, Id aequales, & erigantur perpendicula AG, dK occurrentia lineis incidentiae & emergentiae GH, IK, in G & K. In GH capiatur TH aequalis IK, & ad planum Aa demittatur normaliter Tv. Et per Legum Corol. 2.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 9:1)
Iisdem positis & quod motus ante incidentiam velocior sit quam postea:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 11:1)
& quoniam linea emergentiae coincidit cum eodem plano, perspicuum est quod corpus non potest ultra pergere versus planum Ee. Sed nec potest idem pergere in linea emergentiae Rd, propterea quod perpetuo attrahitur vel impellitur versus medium incidentiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:8)
& angulus emergentiae semper angulo incidentiae aequalis existens, eidem etiamnum manebit aequalis. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:18)
Fit igitur refractio, non in puncto incidentiae, sed paulatim per continuam incurvationem radiorum, factam partim in aere antequam attingunt vitrum, partim (ni fallor) in vitro, postquam illud ingressi sunt:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 16:11)
Posito quod sinus incidentiae in superficiem aliquam sit ad sinum emergentiae in data ratione, quodq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 18:1)
& lineae DF qua AD augetur, ad lineam DG qua DB diminuitur, ratio ultima erit eadem quae sinus incidentiae ad sinum emergentiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 20:7)
adeo lineae ipsae PD, QD, incrementis istis genitae, ut sinus incidentiae & emergentiae ad invicem:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 23:4)
Sit PQRr Spiralis quae secet radios omnes SP, SQ, SR, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 2:1)
& ad Spiralem erectis perpendiculis PO, QO concurrentibus in O, jungatur SO.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 2:4)
Ergo circulus qui transit per puncta O, S, P transibit etiam per punctum Q. Coeant puncta P & Q, & hic circulus in loco coitus PQ tanget Spiralem, adeoque perpendiculariter secabit rectam OP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 4:2)
dico quod corpus gyrari potest in Spirali, quae radios omnes a centro illo ductos intersecat in angulo dato.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 7:2)
Detur Spiralis, & ob datam rationem OS ad OP, densitas Medii in P erit ut 1 ÷ SP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:24)
In Medio igitur cujus densitas est reciproce ut distantia a centro SP, corpus gyrari potest in hac Spirali. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:25)
Et inde Spiralis ad quamlibet Medii densitatem aptari potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 10:3)

SEARCH

MENU NAVIGATION