라틴어 문장 검색

Sit circuli hujus centrum O. Ab hoc centro ad Regulam MN, ad quam altera illa crura CN, BN interea concurrebant dum Trajectoria describebatur, demitte normalem OH circulo occurrentem in K & L. Et ubi crura illa altera CK, BK concurrant ad punctum istud K quod Regulae proprius est, crura prima CP, BP parallela erunt axi majori & perpendicularia minori;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 102:5)
perpendiculum GH aequale 3M, & circulus centro H, intervallo HS descriptus secabit Parabolam in loco quaesito P. Nam demissa ad axem perpendiculari PO, est HGq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 4:5)
ob aequales An, pn, recta nq, quae ad arcum Ap perpendicularis est, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 22:4)
Si Ellipseos latus transversum multo majus sit quam latus rectum, & motus corporis prope verticem Ellipseos desideretur, (qui casus in Theoria Cometarum incidit,) educere licet e puncto G rectam GI axi AB perpendicularem, & in ea ratione ad GK quam habet area AVPS ad rectangulum AK × AS;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 24:1)
Convergit autem series infinita ACQ + E + G + I quam celerrime, adeo ut vix unquam opus fuerit ultra progredi quam ad terminum secundum E. Et fundatur calculus in hoc Theoremate, quod area APS sit ut differentia inter arcum AQ & rectam ab umbilico S in Radium CQ perpendiculariter demissam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:21)
Applicando arearum A & APS semidifferentiam ½APS - ½A vel ½A - ½APS ad lineam SN, quae ab umbilico S in tangentem PT perpendicularis est, orietur longitudo PQ.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 28:7)
Sit sectio illa Conica ARPB & umbilicus inferior S. Et primo si Figura illa Ellipsis est, super hujus axe majore AB describatur semicirculus ADB, & per corpus decidens transeat recta DPC perpendicularis ad axem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 4:4)
spatium AC, quod corpus de loco A perpendiculariter cadendo tempore dato describit, si modo tempori proportionalis capiatur area ABD, & a puncto D ad rectam AB demittatur perpendicularis DC. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 4:11)
SY ad hanc rectam & BQ ad hanc diametrum perpendicularis, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:6)
Nam concipe corpus C quam minima temporis particula lineolam Cc cadendo describere, & interea corpus aliud K, uniformiter in circulo OKk circa centrum S gyrando, arcum Kk describere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 20:1)
& ex aequo velocitas prima ad ultimam, hoc est lineola Cc ad arcum Kk in dimidiata ratione AC ad SC, id est in ratione AC ad CD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 21:8)
¼CD × Cc aequalem esse ½SY × Dd. Sed corporis cadentis velocitas in C aequalis est velocitati qua circulus intervallo ½SC uniformiter describi possit (per Theor. X.) Et haec velocitas ad velocitatem qua circulus radio SK describi possit, hoc est, lineola Cc ad arcum Kk est in dimidiata ratione SK ad ½Sc, id est, in ratione SK ad ½CD, per Corol. 6.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 23:3)
loco ejus E erigatur semper perpendicularis EG, vi centripetae in loco illo ad centrum C tendenti proportionalis: Sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 41:2)
Coincidat autem EG ipso motus initio cum perpendiculari AB, & erit corporis velocitas in loco quovis E ut areae curvilineae ABGE latus quadratum. Q. E. I. In EG capiatur EM lateri quadrato areae ABGE reciproce proportionalis, & sit ALM linea curva quam punctum M perpetuo tangit, & erit tempus quo corpus cadendo describit lineam AE ut area curvilinea ALME.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 41:4)
Porro cum tempus, quo quaelibet longitudinis datae lineola DE describatur, sit ut velocitas, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 43:1)

SEARCH

MENU NAVIGATION