라틴어 문장 검색

tertia vero, quae inpar est denominatio, vj cui par pluralitas est. Rursus si convertas, sexta pars, quae par est denominatio, iij sunt, sed ternarius inpar est;
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 1:9)
Namque hi si per binarium numerum multiplicentur, omnes pariter inpares rite pluralitas demensa sufficiet.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 2:2)
Rursus si ad longitudinem respicias, ubi duo termini unam medietatem habent, quod fit ex multiplicatis extremitatibus, hoc sit, si medius terminus suae capiat pluralitatis augmenta.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 2:1)
Rursus si a quindenario inchoans duos intermisero, qui posterior positus est, eius primus numerus mensura est per tertii inparis pluralitatem.
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 2:7)
Nam post xv intermissis xvij et xviiij et xxj et xxiij post eos xxv repperio, quos quinarius scilicet numerus sua pluralitate metitur.
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 3:6)
Atque hi quidem hoc modo sunt, ut prior ille, quem suae partes superant, talis videatur, tamquam si quis multis super naturam manibus natus, ut centimanus gigas vel triplici coniunctus corpore, ut Geryo tergeminus, vel quicquid unquam monstruosum naturae in partium multiplicatione subripuit;
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 2:1)
Si enim iiij intermittas, quincuplus invenitur, si v sescuplus, si vj septuplus, semperque ipsius multiplicationis nomine uno minus intermissionis vocabulo procreantur.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:18)
Si igitur duo prima latera propositae formulae, quae faciunt angulum ab uno ad x et x procedentia, respiciantur et his subteriores ordines comparentur, qui scilicet a iiij angulum incipientes in vicenos terminum ponunt, duplex, id est prima species multiplicitatis ostenditur ita, ut primus primum sola superet unitate, ut duo unum, secundus secundum binario supervadat, ut quaternarius binarium, tertius tertium tribus, ut senarius ternarium, quartus quartum quaternarii numerositate transcendat, ut viij quaternarium, et per eandem cuncti sequentiam sese minoris pluralitate praetereant.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:1)
Item bis duo iiij sunt, ter tres viiij, quos in semet ipsos multiplicationes primi ordinis perfecerunt.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:3)
Si vero, qui ex his nati fuerint, ternarii multiplicatione produxeris, idem rursus efficient.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:5)
Quodsi superquadripartientes quemadmodum in infinitum progrediantur, appetas addiscere, primas eorum radices in quadruplum multiplices licet, id est viiij et v et eos, qui illa multiplicatione proferentur, rursus in quadruplum, et eandem fieri proportionem inoffensa nimirum ratione repperies;
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:6)
et ceterae species una semper plus multiplicatione crescentibus radicibus oriuntur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:7)
Horum autem eorumque qui sequuntur exempla integre planeque possumus pernotare, si in priorem descriptionem, quam fecimus, cum de superparticulari et multiplici loqueremur, ubi ab uno usque in denariam multiplicationem summa concrevit, diligens velimus acumen intendere.
(보이티우스, De Arithmetica, Liber primus, De eorum exemplis in superiori formula inveniendis. 1:1)
Si vero fuerint triplices et inferiores ordines tripla se in suis terminis multiplicatione superabunt;
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 23:4)
Si igitur duae primae superparticularis species coniungantur, prima species multiplicationis exoritur.
(보이티우스, De Arithmetica, Liber secundus, Quod multiplex intervallum ex quibus superparticularibus medietate posita intervallis fiat eiusque inveniendi regula. 1:1)

SEARCH

MENU NAVIGATION