라틴어 문장 검색

Ipsi vero cybi, qui quamquam tribus intervallis sublati sint, tamen propter aequalem multiplicationem participant inmutabilis substantiae eiusdemque naturae sunt socii, non aliorum quam inparium coacervatione producuntur, nunquam vero parium.
(보이티우스, De Arithmetica, Liber secundus, Cybos eiusdem participare substantiae, quod ab inparibus nascantur 1:1)
Sin vero quadruplices sint, triplicato minore termino maior terminus a minore distabit, et, si quincupla, quadruplicato, et, si sescupla quincuplicato, et una minus multiplicatione, quam est ipsa minorum ad maiores comparatio terminorum, minorem numerus maior exsuperat.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 9:8)
vel si sit in quattuor terminis disiuncta proportio, quod fit sub utrisque extremitatibus, id duarum medietatum multiplicatione concrescat, ut, si sint ij iiij viij xvj, quod fit ex bis xvj, id ex quater viij reddatur.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:3)
Si vero inter iiij qui est tertius terminus aequa parte quarti quartum terminum superet et aequa primi a primo superetur, armonica huiusmodi proportio medietasque perspicitur, et quod continetur sub extremorum adgregatione et multiplicatione medietatis duplex est eo, quod sub utraque extremitate conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:6)
nam si sordidus aut vilis est, feracissimam quamque serere conducit, ut multiplicatione frugum reditus augeatur.
(콜루멜라, 루키우스 유니우스 모데라투스, 농업론, 3권, 2장 5:2)
Nam cum sit undique pedum totidem, multiplicantur in se duo latera, et quae summa ex multiplicatione effecta est, eam dicemus esse quadratorum pedum.
(콜루멜라, 루키우스 유니우스 모데라투스, 농업론, 5권, 2장 1:3)
que quidem forma, quemadmodum et alie, una in se, multiplicatur secundum multiplicationem materie recipientis, ut anima et numerus et alie forme compositioni contingentes. 8.
(단테 알리기에리, De monarchia, Liber Primus 15:21)
ad latera vasis, figuram concavam induens, (ut ipse expertus sum) et incitatiore semper motu ascendet magis & magis, donec revolutiones in aequalibus cum vase temporibus peragendo, quiescat in eodem relative.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 41:8)
Et aequalia erunt revolutionum in Figuris universis circa centrum idem factarum periodica tempora.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 69:2)
prima erat seu proxima, post unam revolutionem secunda erit, post duas tertia, & sic deinceps:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:20)
Unde cum quantitates illae post singulas revolutiones redeunt ad magnitudines primas, aequatio redibit ad formam primam, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:22)
Quo facto, cape GK in ratione ad rotae perimetrum GEFG, ut est tempus quo corpus progrediendo ab A descripsit arcum AP, ad tempus revolutionis unius in Ellipsi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 17:6)
capiatur angulus GCF in ea ratione ad angulos quatuor rectos, quam habet tempus datum, quo corpus descripsit arcum quaesitum AP, ad tempus periodicum seu revolutionis unius in Ellipsi:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 21:9)
Cognoscatur etiam angulus tempori proportionalis, id est, qui sit ad quatuor rectos ut est tempus quo corpus descripsit arcum AP, ad tempus revolutionis unius in Ellipsi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:9)
Completa igitur quarta parte revolutionis unius corpus perveniet ad Apsidem imam, & completa alia quarta parte ad Apsidem summam, & sic deinceps per vices in infinitum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:22)

SEARCH

MENU NAVIGATION