라틴어 문장 검색

A puncto P ducatur recta PH Sphaeram tangens in H, & ad axem PAB demissa Normali HI, bisecetur PI in L;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 78:1)
& pars indefinita LD ducta normaliter in eandem longitudinem per motum continuum, ea lege ut inter movendum crescendo vel decrescendo aequetur semper longitudini LD, describet aream {LBq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 82:7)
Pars autem tertia ALB ÷ LD ducta itidem per motum localem normaliter in eandem longitudinem, describet aream Hyperbolicam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 82:11)
In recta PA capiatur PF ipsi PE aequalis, & erigatur Normalis FK, quae sit ut vis qua punctum E trahit corpusculum P. Sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 25:4)
Capiantur AH, Id aequales, & erigantur perpendicula AG, dK occurrentia lineis incidentiae & emergentiae GH, IK, in G & K. In GH capiatur TH aequalis IK, & ad planum Aa demittatur normaliter Tv. Et per Legum Corol. 2.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 9:1)
Sic in Problemate jam solvendo, si scribantur [sqrt]1 + aa ÷ ee seu n ÷ e pro [sqrt]{1 + QQ}, nn ÷ 2e^3 pro R, & ann ÷ 2e^3 pro S, prodibit Medii densitas ut a ÷ ne, hoc est (ob datam n) ut a ÷ e seu OB ÷ BC, id est ut Tangentis longitudo illa CT, quae ad semidiametrum OL ipsi AK normaliter insistentem terminatur, & resistentia erit ad gravitatem ut a ad n, id est ut OB ad circuli semidiametrum OK, velocitas autem erit ut [sqrt]2BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 72:1)
Sunt autem differentiae motuum angularium circa axem ut hae translationes applicatae ad distantias, sive ut translationes directè & distantiae inversè;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 6:7)
erunt summae distantiarum, hoc est motus toti angulares, ut respondentes summae linearum Aa, Bb, Cc, Dd, Ee:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 6:12)
& tempora motibus angularibus reciprocè proportionalia erunt etiam his areis reciprocè proportionalia.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 6:14)
Hinc motus angulares particularum fluidi sunt reciprocè ut ipsarum distantiae ab axe Cylindri, & velocitates absolutae sunt aequales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 7:2)
Si cylindro & fluido ad hunc modum motis addatur vel auferatur communis quilibet motus angularis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 9:2)
Unde si toti cylindrorum & fluidi Systemati auferatur motus omnis angularis cylindri exterioris, habebitur motus fluidi in cylindro quiescente.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 10:2)
Sunt autem differentiae motuum angularium circa axem ut hae translationes applicatae ad distantias, sive ut translationes directè & distantiae inversè;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 16:10)
cubis reciprocè proportionalia, erunt summae distantiarum, hoc est, motus toti angulares, ut respondentes summae linearum Aa, Bb, Cc, Dd, Ee:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 16:14)
Et tempora periodica motibus angularibus reciprocè proportionalia erunt etiam his areis reciprocè proportionalia.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 16:16)

SEARCH

MENU NAVIGATION