라틴어 문장 검색

Horum igitur si primum compares primo, dupli quantitas invenitur, quae est prima multiplicitatis species, si vero secundum secundo hemioliae quantitatis habitudo producitur, si tertium tertio sesquitertia proportio procreatur, si quartum quarto, sesquiquarta, et si quintum quinto, sesquiquinta, et hinc superparticularium normam in quamvis longissimum spatium progrediens integram inoffensamque repperies, ita ut in prima dupli proportione unitatis solius sit differentia, duo namque ab uno sola semper discrepant unitate.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 4:1)
Rursus si ij ad iiij speculeris, dupla est proportio, si iiij ad vj, habitudinem sesqualteram recognosces.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 1:7)
proportionalitas est duarum vel plurium proportionum similis habitudo, etiamsi non eisdem quantitatibus et differentiis constitutae sint.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:5)
Proportio est duorum terminorum ad se invicem quaedam habitudo et quasi quodammodo continentia, quorum compositio quod efficit, proportionale est. Ex iunctis enim proportionibus proportionalitas fit. In tribus autem terminis minima proportionalitas invenitur.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:7)
Sin vero alius ad unum refertur terminus, alius vero ad alium, necesse est habitudinem disiunctam vocari, ut ad qualitatem quidem proportionis sunt:
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:17)
Post quas proportionum habitudines tres aliae sunt, quae sine nomine feruntur quidem, vocantur autem quarta, quinta, sexta, quae superius dictis oppositae sunt.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:3)
Secundum quem numerum et priores quinque habitudines comparationesque descriptae sunt, ubi quinque maioribus proportionibus, quos vocavimus duces, minores aptavimus alios terminos, quos comites diximus.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:5)
Inde etiam in Aristotelica atque Archytae prius decem praedicamentorum descriptione Pythagoricum denarium manifestum est inveniri;
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:6)
quando quidem et Plato, studiosissimus Pythagorae, secundum eandem disputationem dividit, et Archytas Pythagoricus ante Aristotelem, licet quibusdam sit ambiguum, decem haec praedicamenta constituit.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:7)
Nunc vero de proportionalitatibus deque medietatibus dicendum est, et primum quidem de ea medietate tractabimus, quae secundum quantitatis aequalitatem neglecta proportionis parilitate constitutorum terminorum habitudines servat.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:1)
Quae igitur causa est, huiusmodi terminorum habitudinem, id est arithmeticam, cunctis aliis proportionalitatibus anteponere?
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:4)
aequales enim sunt differentiae, sed eadem proportio atque habitudo non est. Si igitur in tribus terminis consideratio sit, continua proportionalitas dicitur;
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:4)
Namque in hac dispositione iij iiij vj tres ad quattuor comparati sesquitertiam habitudinem, sex vero ad quattuor, sesqualteram reddunt.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:4)
In eadem quoque medietate et diapente symphonia componitur, quam sesqualtera habitudo restituit.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 4:1)
Ternarius autem binario comparatus sesqualteram habitudinem proportionis efficiet.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:3)

SEARCH

MENU NAVIGATION