라틴어 문장 검색

determinat angulum contactus FCG, seu curvaturam quam curva linea habet in C. Si lineola illa FG finitae est magnitudinis, designabitur per terminum tertium una cum subsequentibus in infinitum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 70:10)
At si lineola illa minuatur in infinitum, termini subsequentes evadent infinite minores tertio, ideoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 70:11)
Etenim ob datum spatii incrementum EDde, lineola Dd, quae decrementum est ipsius GD, erit reciproce ut ED, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 11:1)
& (per Lem. X. Lib. I.) lineola TQ, quae vi illa generatur, est in ratione composita ex ratione hujus vis & ratione duplicata temporis quo arcus PQ describitur, (Nam resistentiam in hoc casu, ut infinite minorem quam vis centripeta negligo) erit TQ × SPq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:4)
Ex resistentia oritur arearum differentia RSr, & propterea resistentia est ut lineolae Qr decrementum Rr collatum cum quadrato temporis quo generatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:13)
Nam lineola Rr (per Lem. X. Lib. I.) est in duplicata ratione temporis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:14)
Fluidi homogenei & immoti, quod in vase quocunque immoto clauditur & undique comprimitur, partes omnes (seposita Condensationis, gravitatis & virium omnium centripetarum consideratione) aequaliter premuntur undique, & absque omni motu a pressione illa orto permanent in locis suis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 4:1)
dico quod ejusdem pars nulla ex illa pressione movebitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 6:3)
non premitur aequaliter, augeatur pressio minor, usq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 7:4)
Dico praeterea quod diversarum partium sphaericarum aequalis sit pressio.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 8:2)
Igitur si Fluidum illud in vase non rigido claudatur, & undique non prematur aequaliter, cedet idem pressioni fortiori, per Definitionem Fluiditatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 11:2)
Ideoque in vase rigido Fluidum non sustinebit pressionem fortiorem ex uno latere quam ex alio, sed eidem cedet, idq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 12:2)
Cedendo autem urgebit latus oppositum, & sic pressio undique ad aequalitatem verget.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 12:4)
reducetur pressio undique ad aequalitatem in momento temporis absque motu locali;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 12:6)
Unde nec motus partium fluidi inter se, per pressionem fluido ubivis in externa superficie illatam, mutari possunt nisi, quatenus aut figura superficiei alicubi mutatur, aut omnes fluidi partes intensius vel remissius sese premendo difficilius vel facilius labuntur inter se.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 13:2)

SEARCH

MENU NAVIGATION