라틴어 문장 검색

illud quoque addentdum arbitror, quod cuncta vis multitudinis ab uno progressa termino ad infinita progressionis augmenta concrescit.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:12)
Sunt enim quioam gradus ccertaeque progressionum dimensiones, quibus ascendi progredique possit, ut animi ilum oculum, qui, ut ait Plato, multis oculis corporalibus salvari constituique sit dignior, quod eo solo lumine vestigari vel inspici veritas queat, hunc inquam oculum demersum orbatumque corporeis sensibus hae disciplinae rursus inluminent.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:18)
Ipsorum quoque sonorum adversus se proportio solis neque aliis numeris invenitur.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:34)
Qui enim sonus in diapason symphonia esst, idem duplicis numeri proportione colligitur;
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:35)
Porro autem inhil ex similibus componi videtur, nec ex his, quae nulla rationis proportione iunguntur et a se omni subastantia naturaque discreta sunt.
(보이티우스, De Arithmetica, Liber primus, De substantia numeri 1:6)
Constat erog, quoniam coniuncuts est numerus, neque ex similibus esse coniunctum neque ex his, quae ad se invicem nulla ratione proportionis haerent.
(보이티우스, De Arithmetica, Liber primus, De substantia numeri 1:7)
ab uno enim quoscunque in duplici proportione notaveris, semper pares pariter procreantur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 12:5)
si autem fuerint inpares dispoxitiones, quod ab una medietate conficitur, hoc idem sub altrinsecus positis partibus procreatur, atque hoc usquedum ad extremitates progressio fiat.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:11)
Pariter enim inpares cuncti dudum ordinatim positis inparibus nascebantur, pariter vero pares ex duplici progressione.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 2:2)
atque haec est infinita progressio.
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 3:9)
Inter hos autem velut inter inaequales intemperantias medii temperamentum limitis sortitus est ille numerus, qui perfectus dicitur, virtutis scilicet aemulator, qui nec supervacua progressione porrigitur, nec contracta rursus deminutione remittitur, sed medietatis obtinens terminum suis aequus partibus nec crassatur abundantia, nec eget inopia, ut vj vel xxviiij.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 3:1)
Si igitur bis solum maiorem numerum minor numerus metiatur, subduplus vocabitur, si vero ter, subtriplus, si quater, subquadruplus et fit per haec in infinitum progressio, additaque eos semper sub praepositione nominabis, ut unus duorum subduplus, trium subtriplus, iiij subquadruplus appelletur et consequenter.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 1:10)
Superparticularium quoque infinita est multitudo ob eam rem, quod eiusdem species interminabili progressione funguntur.
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 1:6)
Atque in eo si ternarius binario, vel si senarius quaternario, vel novenarius senario comparetur, vel omnes triplices superiores si duplicibus numeris consequentibus opponantur, hemiolia id est sesqualtera proportio nascetur.
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 5:2)
Primus enim primum duobus superat, ut unum tres, secundus secundum quaternario, ut binarium senarius, tertius tertium sex, ut ternarium novenarius, et ad eundem ceteri modum progressionis augescunt.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:3)

SEARCH

MENU NAVIGATION