라틴어 문장 검색

Si enim secundum angulum notet, cuius est initium quaternarius, eique superiacet binarius, atque ad hunc sequentem quis accommodet ordinem, sesqualtera proportio declarabitur.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:8)
Primus enim primum, id est ternarius binarium, uno superat, secundus vero secundum duobus, tertius tertium tribus et deinceps.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:11)
sed unitas a binario unitate praeceditur;
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:7)
Duplex sesqualter est, ut v ad duo. Habent enim v binarium numerum bis et eius mediam partem, id est j. Duplex vero sesquitertius est septenarius ad ternarium comparatus.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 2:2)
et hi semper nascentur dispositis in ordinem a binario numero omnibus naturaliter paribus inparibusque terminis, si contra eas omnes a quinario numero inpares comparentur, ut primum primo, secundum secundo, tertium tertio caute et diligenter adponas, ut sit dispositio talis:
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 2:5)
Ea vero species huius numeri, quae est triplex sesqualtera, hoc modo procreatur, si disponantur a binario numero omnes in ordinem pares et ad eos a septenario numero inchoantes septenario sese supergredientes solito ad alterutrum comparationis modo aptentur.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 14:1)
de solidis etiam, id est cybis et sphericis vel pyramidis, laterculis etiam vel tignulis et cuneis, quae omnia quidem geometricae propriae considerationis sunt, sed sicut ipsa geometriae scientia ab arithmetica velut quadam radice ac matre producta est, ita etiam eius figurarum semina in primis numeris invenimus, planum siquidem fecimus, quod omnes disciplinas haec interempta consumeret, quas minime constituta firmaret.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:5)
Ex hoc igitur principio, id est ex unitate, prima omnium longitudo succrescit, quae a binarii numeri principio in cunctos sese numeros explicat, quoniam primum intervallum linea est. Duo vero intervalla sunt longitudo et latitudo, id est linea et superficies.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:24)
Ternarius vero, qui primus est opere et actu ipso triangulus, crescente unitate binarium numerum latus habebit.
(보이티우스, De Arithmetica, Liber secundus, De lateribus triangulorum numerorum. 1:4)
Huic si secundum adgregavero, qui in naturali numerorum dispositione descriptus est, id est binarium, primus mihi triangulus opere et actu nascitur, id est ternarius.
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:2)
Nam ternarium, qui est primus actu triangulus, adiecto binario unitati feceramus;
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:7)
Nam si uni relicto binario ternarium adposuero, quaternarius mihi quadratus exoritur.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:3)
Nam in primo quadrato, quoniam ex uno fit, unus est in latere, in secundo, id est quaternario, quoniam ex uno et tribus procreatur, qui duo sunt termini, binario latus texitur.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:9)
Quadrati vero numeri, id est tetragoni, procreatio fiebat ex numeris, qui uno intermisso copulabantur, cum se binario superarent.
(보이티우스, De Arithmetica, Liber secundus, De exagonis eorumque generationibus. 1:3)
Videtur autem, quemadmodum in planis figuris triangulus numerus primus est, sic in solidis, qui vocatur pyramis, profunditatis esse principium.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:1)

SEARCH

MENU NAVIGATION