라틴어 문장 검색

Est autem pyramis alias a triangula basi in altitudinem sese erigens, alias a tetragona, alias a pentagona et secundum sequentium multitudines angulorum ad unum cacuminis verticem sublevata.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:3)
Posito enim triangulo atque descripto si per tres angulos singulae lineae recte stantes ponantur, haeque tres inclinentur, ut ad unum medium punctum vertices iungant, fit pyramis, quae, cum a triangula basi profecta sit, tribus triangulis per latera concluditur hoc modo:
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:4)
et quantoscunque angulos habuerit figura, super quam pyramis residet, tot ipsa per latera triangulis continetur, ut ex subiectis descriptionibus palam est.
(보이티우스, De Arithmetica, Liber secundus, De his pyramidis, quae a quadratis vel a ceteris multiangulis proficiscuntur figuris 2:2)
Dicuntur autem huiusmodi pyramides hoc modo:
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:1)
secundus vero triangulus est ternarius, quem si cum primo coniunxero, id est cum unitate, quaternaria mihi profunditas pyramidis excrescit.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:10)
At vero si his tertium, senarium, iunxero denaria pyramidis procreabitur altitudo.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:11)
His si denarium iunxero viginti numerorum pyramis veniet, atque ita in cunctis aliis eadem ratio copulationis est.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:12)
Pyramides a triangulis j iiij x xx xxxv lvj lxxiiij cxx clxv ccxx
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 3:1)
Namque in x pyramide super sex additi sunt tres atque unus, qui senarius superat ternarium quantitate, ipsi vero tres unum pluralitate transcendunt, qui unus extremum terminum progressionis offendit.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:3)
Illae quoque, quae sunt a tetragono pyramides, eadem tetragonorum super se compositione nascuntur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:5)
Descriptis enim cunctis tetragonis, id est j iiij viiij xvj xxv xxxvj xlviiij lxiiij lxxxj c, si unitatem primam ex hac dispositione praesumam, erit mihi potestate et vi pyramis ipsa unitas, nondum etiam opere atque actu.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:6)
At si huic tetragonum superponam, id est quattuor, nascetur pyramis quinque numerorum, quae duobus tantum numeris per latera positis continetur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:7)
Sin vero his sequentes novem adiecero, fiet mihi quattuordecim numerorum forma pyramidis, quae per latera tribus unitatibus concludatur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:8)
Atque huic si sequentem tetragonum xvj superponam, tricenaria mihi pyramidis forma producitur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:9)
In his quoque omnibus pyramidis tot erunt unitates per latera, quantae in se numerorum adgregatae fuerint quantitates.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:10)

SEARCH

MENU NAVIGATION