-
hoc est si capiantur datae quantitates F, G in ea ratione ad invicem quam habet angulus VCP ad angulum VCp, ut Gq. - Fq. ad Fq. Et propterea, si centro C intervallo quovis CP vel Cp describatur Sector circularis aequalis areae toti VPC, quam corpus P tempore quovis in orbe immobili revolvens radio ad centrum ducto descripsit, differentia virium, quibus corpus P in orbe immobili & corpus p in orbe mobili revolvuntur, erit ad vim centripetam qua corpus aliquod radio ad centrum ducto Sectorem illum, eodem tempore quo descripta sit area VPC, uniformiter describere potuisset, ut Gq. - Fq. ad Fq. Namq;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 7:3)
-
Igitur si ad rectam CV positione datam erigatur perpendiculum VP longitudinis indeterminatae, jungaturq;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 13:2)
-
Numerator ille A^n seu {T - X}^n in seriem indeterminatam per Methodum nostram Serierum convergentium reducta, evadit T^n - nXT^{n - 1} + {nn - n}÷2 Xq.T^{n - 2} &c.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:5)
-
, tempus quo corpus describit arcum ST est ad tempus oscillationis unius, ut arcus HI (tempus quo corpus H perveniet ad L) ad semicirculum HKM (tempus quo corpus H perveniet ad M.) Et velocitas corporis penduli in loco T est ad velocitatem ipsius in loco infimo R, (hoc est velocitas corporis H in loco L ad velocitatem ejus in loco G, seu incrementum momentaneum lineae HL ad incrementum momentaneum lineae HG, arcubus HI, HK aequabili fluxu crescentibus) ut ordinatim applicata LI ad radium GK, sive ut [sqrt]{SRq.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:12)
-
Igitur in Horologiis, si vires a Machina in Pendulum ad motum conservandum impressae ita cum vi gravitatis componi possint, ut vis tota deorsum semper sit ut linea quae oritur applicando rectangulum sub arcu TR & radio AR, ad sinum TN, Oscillationes omnes erunt Isochronae.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 47:2)
-
Dico jam quod area AOP, radio OP ab initio motus descripta, sit tempori proportionalis.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 55:7)
-
Hyperbolam vel Parabolam attractione languida, Ellipsim fortiore,) & Radio ad maximum ducto, verret areas temporibus proportionales, absq;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 41:9)
-
una tendente ad S & oriunda a mutua attractione corporum S & P. Hac vi sola corpus P, circum corpus S sive immotum, sive hac attractione agitatum, describere deberet & areas, radio PS temporibus proportionales, & Ellipsin cui umbilicus est in centro corporis S. Patet hoc per Prob. VI.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 50:10)
-
adeo quae faciet ut corpus P, radio SP, areas non amplius temporibus proportionales describet, atq;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 50:25)
-
in tertium sint ad invicem reciproce ut quadrata distantiarum, corpus P radio PS aream circa corpus S velocius describet prope conjunctionem A & oppositionem B, quam prope quadraturas C, D. Namq;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 54:4)
-
) in ratione composita ex ratione simplici radii SP directe & ratione duplicata temporis periodici inverse:
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 58:4)
-
adeo vel diminuto hoc Radio, tempus periodicum augeri magis, vel diminui minus quam in Radii hujus ratione sesquiplicata, per Corol. 6. Prop. IV.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 58:9)
-
Ergo si actio corporis longinqui Q, qua vis illa diminuitur, augeatur ac diminuatur per vices, augebitur simul ac diminuetur Radius SP per vices, & tempus periodicum augebitur ac diminuetur in ratione composita ex ratione sesquiplicata Radii & ratione dimidiata qua vis illa centripeta corporis centralis S per incrementum vel decrementum actionis corporis longinqui Q diminuitur vel augetur.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 58:12)
-
Cum autem linea LM nunc major si nunc minor quam radius PS, Exponatur vis mediocris LM per radium illum PS, & erit haec ad vim mediocrem QK vel QN (quam exponere licet per QS) ut longitudo PS ad longitudinem QS.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 69:2)
-
erit superficiei pars annularis, convolutione arcus rE genita, ut lineola Dd, manente Sphaerae radio PE, (uti demonstravit Archimedes in Lib.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 67:2)