라틴어 문장 검색

Biseca BF in G, & acta AG diameter erit ad quam BG & FG ordinatim applicantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 22:4)
productus DC circa polum C. Notentur puncta M, N in quibus anguli crus BC secat radium illum ubi crus alterum BH concurrit cum eodem radio in punctis D & P. Deinde ad actam infinitam MN concurrant perpetuo radius ille CP vel CD & anguli crus CB, & cruris alterius BH concursus cum radio delineabit Trajectoriam quaesitam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 53:2)
Delineabit igitur cruris BH concursus cum radio sectionem Conicam per puncta C, D, P transeuntem, & rectam BH tangentem in puncto B. Q. E. F.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 56:3)
Nam rectae quaevis convergentes transmutantur in parallelas, adhibendo pro radio ordinato primo AO lineam quamvis rectam, quae per concursum convergentium transit;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 68:4)
adhibita pro radio ordinato primo, transmutetur figura, per Lemma superius, in figuram novam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 73:2)
Ab intersectione communi duarum quarumlibet tangentium ad intersectionem communem reliquarum duarum agatur recta infinita, & eadem pro radio ordinato primo adhibita, transmutetur figura (per Lem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 76:1)
XXII) in figuram novam, & Tangentes binae, quae ad radium ordinatum concurrebant, jam evadent parallelae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 76:2)
N, ut sit EN ad longitudinem L, ut anguli illius sinus EF ad radium CF;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 21:11)
tum etiam longitudo quaedam L, quae sit ad radium in eadem ratione inverse.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:2)
Sit angulus iste N. Tum capiatur & angulus D ad angulum B, ut est sinus iste anguli ACQ ad Radium, & angulus E ad angulum N - ACQ + D, ut est longitudo L ad longitudinem eandem L cosinu anguli ACQ + ½D diminutam, ubi angulus iste recto minor est, auctam ubi major.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:10)
Postea capiatur tum angulus F ad angulum B, ut est sinus anguli ACQ + E ad radium, tum angulus G ad angulum N - ACQ - E + F ut est longitudo L ad Longitudinem eandem cosinu anguli ACQ + E + ½F diminutam ubi angulus iste recto minor est, auctam ubi major.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:11)
Tertia vice capiatur angulus H ad angulum B, ut est sinus anguli ACQ + E + G ad radium;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:12)
Convergit autem series infinita ACQ + E + G + I quam celerrime, adeo ut vix unquam opus fuerit ultra progredi quam ad terminum secundum E. Et fundatur calculus in hoc Theoremate, quod area APS sit ut differentia inter arcum AQ & rectam ab umbilico S in Radium CQ perpendiculariter demissam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:21)
) & L ipsius latere recto, quaere tum angulum Y, cujus Tangens sit ad Radium ut est semiaxium differentia AO - OD ad eorum summam AO + OD;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:5)
tum angulum Z, cujus tangens sit ad Radium ut rectangulum sub umbilicorum distantia SH & semiaxium differentia AO - OD ad triplum rectangulum sub OQ semiaxe minore & AO - ¼L differentia inter semiaxem majorem & quartam partem lateris recti.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:6)

SEARCH

MENU NAVIGATION