- 문장 검색

라틴어 문장 검색

Eadem de causa intersectiones binae rectarum & sectionum Conicarum prodeunt semper per aequationes duarum dimensionum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:16)
Ergo intersectiones numero infinitae rectarum, propterea quod omnium eadem est lex & idem calculus, requirunt aequationes numero dimensionum & radicum infinitas, quibus omnes possunt simul exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:18)
Si a polo in rectam illam secantem demittatur perpendiculum, & perpendiculum una cum secante revolvatur circa polum, intersectiones spiralis transibunt in se mutuo, quaeq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:19)
exhibebit intersectiones omnes, & propterea radices habebit numero infinitas, quibus omnes exhiberi possunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:24)
Nequit ergo intersectio rectae & spiralis per aequationem finitam generaliter inveniri, & idcirco nulla extat Ovalis cujus area, rectis imperatis abscissa, possit per talem aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:25)
Area APS est ut area AQS, id est, ut differentia inter sectorem OQA & triangulum OQS, sive ut differentia rectangulorum ½Q × AQ & ½OQ × SR, hoc est, ob datam ½OQ, ut differentia inter arcum AQ & rectam SR, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 18:4)
ad rectangulum AS × OD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 21:5)
Si Ellipseos latus transversum multo majus sit quam latus rectum, & motus corporis prope verticem Ellipseos desideretur, (qui casus in Theoria Cometarum incidit,) educere licet e puncto G rectam GI axi AB perpendicularem, & in ea ratione ad GK quam habet area AVPS ad rectangulum AK × AS;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 24:1)
Sin figura superior RPB Hyperbola est, describatur ad eandem diametrum principalem AB Hyperbola rectangula BD:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 6:2)
quod corporis in linea RPB circa centrum S moventis velocitas in loco quovis P sit ad velocitatem corporis intervallo SP circa idem centrum circulum describentis in dimidiata ratione rectanguli ½L × SP ad SY quadratum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 11:9)
Patet hoc per Theorema X. Sin ratio illa minor vel major est quam 2 ad 1, priore casu Circulus, posteriore Hyperbola rectangula super diametro SA describi debet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 31:4)
cadens acquisivit eodem loco D, & in perpendiculari DF capiatur DR, quae sit ad DF ut vis illa uniformis ad vim alteram in loco D, & compleatur rectangulum PDRQ, eiq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 44:3)
completo rectangulo EDRS, cum sit area ABFD ad aream DFGE ut VV ad 2V × I, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 44:6)
innotescet erigendo ordinatam em reciproce proportionalem lateri quadrato ex PQRD + vel - DFge, & capiendo tempus quo corpus descripsit lineam De ad tempus quo corpus alterum vi uniformi cecidit a P & cadendo pervenit ad D, ut area curvilinea DLme ad rectangulum 2PD × DL. Namq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 46:3)
ut rectangulum 2PE × DL ad aream DLME; estq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 46:5)

SEARCH

MENU NAVIGATION