라틴어 문장 검색

Nam si conditio illa in corporibus non perfecte duris tentanda est, debebit solummodo reflexio minui in certa proportione pro quantitate vis Elasticae.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 38:3)
Primum demittendo Pendula & mensurando reflexionem, inveni quantitatem vis Elasticae;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 38:10)
deinde per hanc vim determinavi reflexiones in aliis casibus concursuum, & respondebant experimenta.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 38:11)
hoc pacto Lex tertia quoad ictus & reflexiones per Theoriam comprobata est, quae cum experientia plane congruit.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 38:16)
Ut corpora in concursu & reflexione idem pollent, quorum velocitates sunt reciproce ut vires insitae:
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 40:1)
vis qua singulis reflexionibus impingit in circulum erit ut ejus velocitas, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 36:4)
summa virium in dato tempore erit ut velocitas illa & numerus reflexionum conjunctim, hoc est (si Polygonum detur specie) ut longitudo dato illo tempore descripta & longitudo eadem applicata ad Radium circuli, id est ut quadratum longitudinis illius applicatum ad Radium;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 36:5)
Requiritur lex vis centripetae tendentis ad centrum spiralis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 59:3)
Hoc motu punctum illud describet Spiralem gyris infinitis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:3)
omnia Spiralis puncta per aequationem finitam inveniri possunt:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:6)
& propterea rectae cujusvis positione datae intersectio cum spirali inveniri etiam potest per aequationem finitam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:7)
Atqui recta omnis infinite producta spiralem secat in punctis numero infinitis, & aequatio, qua intersectio aliqua duarum linearum invenitur, exhibet earum intersectiones omnes radicibus totidem, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:8)
Si a polo in rectam illam secantem demittatur perpendiculum, & perpendiculum una cum secante revolvatur circa polum, intersectiones spiralis transibunt in se mutuo, quaeq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:19)
Nequit ergo intersectio rectae & spiralis per aequationem finitam generaliter inveniri, & idcirco nulla extat Ovalis cujus area, rectis imperatis abscissa, possit per talem aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:25)
Eodem argumento, si intervallum poli & puncti, quo spiralis describitur, capiatur Ovalis perimetro abscissae proportionale, probari potest quod longitudo perimetri nequit per finitam aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 11:1)

SEARCH

MENU NAVIGATION