라틴어 문장 검색

Centro P intervallo PE describatur superficies Sphaerica EFK, qua distinguatur segmentum in partes duas EBKF & EFKD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 110:3)
& summa virium erit vis segmenti totius EBKD. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 110:8)
& jungantur KM auferens ab eadem segmentum KMRK.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 36:5)
Et eodem computando fundamento invenire licet vires segmentorum Sphaeroidis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 38:1)
AEquales igitur sunt vires coni DPF & segmenti Conici EGCB, & per contrarietatem se mutuo destruunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:14)
In ea detur punctum A, & capiatur segmentum AP velocitati proportionale.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 18:3)
Si annuli, qui à centro aequaliter distant, vel citiùs revolverentur vel tardiùs juxta polos quàm juxta aequatorem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 17:9)
Per motum illum circularem fit ut partes ab axe recedentes juxta aequatorem ascendere conentur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 28:2)
Ideoque materia si fluida sit ascensu suo ad aequatorem diametros adaugebit, axem verò descensu suo ad polos diminuet.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 28:3)
Inito igitur calculo invenio, per Prop. IV. Lib. I. quod vis centrifuga partium Terrae sub aequatore, ex motu diurno oriunda, sit ad vim gravitatis ut 1 ad 290-4/5.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:2)
sitque ACQqca canalis aquae plena, à polo Qq ad centrum Cc, & inde ad aequatorem Aa pergens:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:4)
Est igitur diameter Terrae secundum aequatorem ad ipsius diametrum per polos ut 692 ad 689.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 33:9)
) Terra altior erit ad aequatorem quàm ad polos, excessu pedum 85200 seu milliarium 17.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 33:11)
Si Planeta vel major sit vel densior, minorve aut rarior quàm Terra, manente tempore periodico revolutionis diurnae, manebit proportio vis centrifugae ad gravitatem, & propterea manebit etiam proportio diametri inter polos ad diametrum secundum aequatorem.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 34:1)
Unde tale confit Theorema, quod incrementum ponderis, pergendo ab AEquatore ad Polos, sit quam proximè ut Sinus versus latitudinis duplicatae, vel quod perinde est ut quadratum Sinus recti Latitudinis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:1)

SEARCH

MENU NAVIGATION