라틴어 문장 검색

Sit P corpus in centro Sphaerae, & RBSD segmentum ejus plano RDS & superficie Sphaerica RBS contentum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 107:1)
Superficie Sphaerica EFG centro P descripta secetur DB in F, ac distinguatur segmentum in partes BREFGS, FEDG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 107:2)
& area curvilinea BDLIB, quam ordinatim applicata FN in longitudinem DB per motum continuum ducta describit, erit ut vis tota qua segmentum totum RBSD trahit corpus P. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 107:7)
A segmento EBK trahatur corpus P (Vide Fig. Prop. 79. 80. 81.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 110:1)
Centro P intervallo PE describatur superficies Sphaerica EFK, qua distinguatur segmentum in partes duas EBKF & EFKD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 110:3)
& summa virium erit vis segmenti totius EBKD. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 110:8)
& jungantur KM auferens ab eadem segmentum KMRK.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 36:5)
Et eodem computando fundamento invenire licet vires segmentorum Sphaeroidis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 38:1)
AEquales igitur sunt vires coni DPF & segmenti Conici EGCB, & per contrarietatem se mutuo destruunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:14)
AB, DG ad Asymptoton AC perpendiculares, & exponatur tum corporis velocitas tum resistentia Medii, ipso motus initio, per lineam quamvis datam AC, elapso autem tempore aliquo per lineam indefinitam DC:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 13:3)
resistentia per lineam indefinitam AK;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:2)
Et primus terminus, qui hic est e, denotabit semper longitudinem ordinatae BC insistentis ad indefinitae quantitatis initium B;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 70:5)
Ponatur indefinite, quod linea AGK Hyperbola sit, centro X Asymptotis MX, NX, ea lege descripta, ut constructo rectangulo XZDN cujus latus ZD secet Hyperbolam in G & Asymptoton ejus in V, fuerit VG reciproce ut ipsius ZX vel DN dignitas aliqua ND^n, cujus index est numerus n:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 81:2)
In ea detur punctum A, & capiatur segmentum AP velocitati proportionale.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 18:3)
Hoc est (si ob brevitatem pulsuum supponamus HK & KN indefinite minores esse quantitate V) ut {HL - KN} ÷ VV ad 1 ÷ V, sive ut HL - KN ad V. Quare cum quantitas V detur, differentia virium est ut HL - KN, hoc est (ob proportionales HL - KN ad HK, & OM ad OI vel OP, datasque HK & OP) ut OM;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 46:1)

SEARCH

MENU NAVIGATION