라틴어 문장 검색

XI, quod corpus cadendo describet spatium AC eodem tempore quo corpus aliud uniformiter circa centrum S gyrando, describere potest arcum OK.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 27:4)
immobili, augeri vel minui potest ejus motus angularis circa centrum virium in ratione data, & inde inveniri novi orbes immobiles in quibus corpora novis viribus centripetis gyrentur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 12:3)
vis qua corpus gyrari potest in Curva illa Vpk quam punctum p perpetuo tangit, erit reciproce ut cubus altitudinis Cp. Nam corpus P, per vim inertiae, nulla alia vi urgente, uniformiter progredi potest in recta VP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 13:4)
Corporum duorum S & P circa commune gravitatis centrum C revolventium tempus periodicum esse ad tempus periodicum corporis alterutrius P, circa alterum immotum S gyrantis & figuris quae corpora circum se mutuo describunt figuram similem & aequalem describentis, in dimidiata ratione corporis alterius S, ad summam corporum S + P.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 15:1)
Impedietur autem iste ad lineam IK accessus faciendo ut Systema corporum T & L ex una parte, & corpus S ex altera, justis cum velocitatibus, gyrentur circa commune gravitatis centrum C. Tali motu corpus S (eo quod summa virium motricium SD × T & SD × L, distantiae CS proportionalium, trahitur versus centrum C) describit Ellipsin circa idem C;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 34:13)
Globus igitur homogeneus & perfectus non retinet motus plures distinctos, sed impressos omnes componit & ad unum reducit, & quatenus in se est, gyratur semper motu simplici & uniformi circa axem unicum inclinatione semper invariabili datum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 74:22)
Casu ut corpora gyrentur in Conicis Sectionibus, & componentes corporum Sphaericorum vires centripetas eadem lege in recessu a centro decrescentes vel crescentes cum seipsis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 60:4)
Sit PQRr Spiralis quae secet radios omnes SP, SQ, SR, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 2:1)
& ad Spiralem erectis perpendiculis PO, QO concurrentibus in O, jungatur SO.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 2:4)
Ergo circulus qui transit per puncta O, S, P transibit etiam per punctum Q. Coeant puncta P & Q, & hic circulus in loco coitus PQ tanget Spiralem, adeoque perpendiculariter secabit rectam OP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 4:2)
Detur Spiralis, & ob datam rationem OS ad OP, densitas Medii in P erit ut 1 ÷ SP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:24)
Velocitas in loco quovis P ea semper est quacum corpus in Medio non resistente gyrari potest in circulo, ad eandem a centro distantiam SP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 9:2)
Et inde Spiralis ad quamlibet Medii densitatem aptari potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 10:3)
Fiat resistentia aequalis dimidio vis centripetae & Spiralis conveniet cum linea recta PS, inque hac recta corpus descendet ad centrum, dimidia semper cum velocitate qua probavimus in superioribus in casu Parabolae (Theor. X. Lib. I.) descensum in Medio non resistente fieri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 12:3)
tempus descensus in Spirali erit ad tempus descensus in recta SP in eadem illa data ratione, proindeque datur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 13:3)

SEARCH

MENU NAVIGATION