라틴어 문장 검색

dico quod corpus gyrari potest in Spirali, quae radios omnes a centro illo ductos intersecat in angulo dato.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 7:2)
Detur Spiralis, & ob datam rationem OS ad OP, densitas Medii in P erit ut 1 ÷ SP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:24)
In Medio igitur cujus densitas est reciproce ut distantia a centro SP, corpus gyrari potest in hac Spirali. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:25)
Et inde Spiralis ad quamlibet Medii densitatem aptari potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 10:3)
Corpus itaque gyrari nequit in hac spirali, nisi ubi vis resistentiae minor est quam dimidium vis centripetae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 12:2)
Fiat resistentia aequalis dimidio vis centripetae & Spiralis conveniet cum linea recta PS, inque hac recta corpus descendet ad centrum, dimidia semper cum velocitate qua probavimus in superioribus in casu Parabolae (Theor. X. Lib. I.) descensum in Medio non resistente fieri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 12:3)
tempus descensus in Spirali erit ad tempus descensus in recta SP in eadem illa data ratione, proindeque datur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 13:3)
numerus revolutionum quas corpus intra circulorum circumferentias complere potest, est ut PS ÷ OS, sive ut Tangens anguli quem Spiralis continet cum radio PS;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 14:3)
Et quamvis motus excentrici in Spiralibus ad formam Ovalium accedentibus peragantur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 18:2)
dico quod corpus gyrari potest in Spirali, quae radios omnes a centro illo ductos intersecat in angulo dato.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 20:2)
Invenire & vim centripetam & Medii resistentiam qua corpus in data Spirali data lege revolvi potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 25:1)
Sit spiralis illa PQR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 26:1)
Data lege vis centripetae, invenire Medii densitatem in locis singulis, qua corpus datam Spiralem describet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 28:1)
Vorticis vim illam, qua priùs in Orbita sua tanquam in aequilibrio constitutum retinebatur, jam superans, recedet à centro & revolvendo describet Spiralem, non amplius in eundem Orbem rediens.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 35:11)
Nam si aether aut corpus aliud quodcunque vel gravitate omnino destitueretur vel pro quantitate materiae suae minus gravitaret, quoniam id non differt ab aliis corporibus nisi in forma materiae, posset idem per mutationem formae gradatim transmutari in corpus ejusdem conditionis cum iis quae pro quantitate materiae quam maximè gravitant, (per Hypoth. III.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 24:4)

SEARCH

MENU NAVIGATION