라틴어 문장 검색

vocabitur autem haec linea mathematicis rationibus axon.
(비트루비우스 폴리오, 건축술에 관하여, LIBER NONUS, 7장22)
Cum hoc ita sit descriptum et explicatum, sive per hibernas lineas sive per aestivas sive per aequinoctiales aut etiam per menstruas in subiectionibus rationes horarum erunt ex analemmatos describendae, subiciunturque in eo multae varietates et genera horologiorum et describuntur rationibus his artificiosis.
(비트루비우스 폴리오, 건축술에 관하여, LIBER NONUS, 7장29)
ita cum explicaretur, volvebat rotas, sed non poterat ad lineam via recta ducere, sed exibat in unam partem.
(비트루비우스 폴리오, 건축술에 관하여, LIBER DECIMUS, 2장67)
in capitibus circino dividentur circumitiones eorum tetrantibus et octantibus in partes octo, eaeque lineae ita conlocentur, ut plano posito tigno utriusque capitis ad libellam lineae inter se respondeant, et quam magna pars sit octava circinationis tigni, tam magna spatia decidantur in longitudinem.
(비트루비우스 폴리오, 건축술에 관하여, LIBER DECIMUS, 6장5)
quibus in aequatione scriptis, & aequatione prodeunte resolutâ, obtinetur x aequalis 0,0072036, & inde semidiameter CS fit 1,0072, & semidiameter AS 0,9928, qui numeri sunt ut 69-11/12 & 68-11/12 quam proximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 42:12)
Non absque amictu lineo incedere, sed pretium vestium linearum non habere laudabile est;
(히에로니무스, 편지들, Ad Nepotianum Phesbyterum 9:4)
& angulum V (primam medii motus aequationem) ad angulum Y (aequationem maximam primam) ut est sinus anguli T duplicati ad radium; atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:9)
angulum X (aequationem secundam) ad angulum Z (aequationem maximam secundam) ut est sinus versus anguli T duplicati ad radium duplicatum, vel (quod eodem recidit) ut est quadratum sinus anguli T ad quadratum Radii.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:10)
Jam si area Oualis per finitam aequationem inveniri potest, invenietur etiam per eandem aequationem distantia puncti a polo;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:4)
ternae rectarum & curvarum tertiae potestatis per aequationes trium, quaternae rectarum & curvarum quartae potestatis per aequationes dimensionum quatuor, & sic in infinitum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:17)
Sin AD & DG (vel earum alterutra) ascendebant ad duas dimensiones in aequatione prima, ascendent itidem ad & dg ad duas in aequatione secunda.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 66:13)
quorum locorum extremae lineae eandem mensuram colligunt, eorum spatium quoque, quod iis lineis continetur, par sit necesse est.
(퀸틸리아누스, 변론 가정 교육, Liber I 370:5)
AEquationes maximae Nodorum & Augis Satellitis cujusque fere sunt ad aequationes maximas Nodorum & Augis Lunae respectivè, ut motus Nodorum & Augis Satellitum, tempore unius revolutionis aequationum priorum, ad motus Nodorum & Apogaei Lunae tempore unius revolutionis aequationum posteriorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 10:10)
Unde etiam intersectiones Sectionum Conicarum & curvarum tertiae potestatis, eo quod sex esse possunt, simul prodeunt per aequationes sex dimensionum, & intersectiones duarum curvarum tertiae potestatis, quia novem esse possunt, simul prodeunt per aequationes dimensionum novem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:14)
Nequit ergo intersectio rectae & spiralis per aequationem finitam generaliter inveniri, & idcirco nulla extat Ovalis cujus area, rectis imperatis abscissa, possit per talem aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:25)

SEARCH

MENU NAVIGATION